® NTNU TU/e

Exploiting nonlinearities for performance
Improvements in non-stationary control
problems

Alexey Pavlov Erik Steur Nathan van de Wouw
Norwegian University of Science and Technology

Eindhoven University of Technology



Non-stationary control problems
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Non-stationary control problems: tools

Linear systems: Stability: local=nonlocal; Performance: Frequency Domain, H_infty,
Internal Model Principle
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Existence of a solution with zero Regulator equations
regulation error (under some Solvability
steady-state control action)



The output regulation problem: methodology

Existence of a solution with zero Regulator equations
regulation error (under some Solvability
steady-state control action)

Steady-state action of the Internal model design

controller
Controller

design



The output regulation problem: methodology

Existence of a solution with zero
regulation error (under some
steady-state control action)

Steady-state action of the
controller

Stabilizing action of the
controller

Solvability

Controller
design

Regulator equations

Internal model design

(incrementally) Stabilizing
controller design



The output regulation problem: methodology

Existence of a solution with zero Regulator equations
regulation error (under some Solvability
steady-state control action)

Steady-state action of the Internal model design

controller
Controller

design

(incrementally) Stabilizing

Stabilizing action of the /
controller design

controller

Tuning for improved Controller tuning

Tunin
performance g



Controller performance
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Steady-state error

Robustness

Rise time
Overshoot
Settling time

Regulation error sensitivity to
noise

Control sensitivity to noise

Energy efficiency of controller

Amplitude

Step Response
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Controller performance
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Controlled synchronization problem

Network of dynamic systems System equations

\) U; |x; = f(ﬂ‘;, t) + Bu; Yi
P oo hIiM
JH\) i=1....N

Control synchronization problem: find control laws for u; such that

|z (t) —x;(t)] = 0, as t — oo, Vi,Jj

Constraints: 1) coupling law u; can depend on ¥; and ¥, of neighboring system j € N
2) all solutions remain bounded for ¢ > 0

3) in synchrony, the systems should exhibit the dynamics of @; = f(x;.1)



Controlled synchronization problem

Ney”™ N

HOW TO ACHIEVE SYNCHRONIZATION AND
IMPROVE PERFORMANCE OF THE COUPLING CONTROL LAWS?

\_ W

Control synchronization problem: find control laws for u; such that
|z (t) —x;(t)] = 0, as t — oo, Vi,Jj
Constraints: 1) coupling law u; can depend on ¥; and ¥, of neighboring system j € N

2) all solutions remain bounded for ¢ > 0

3) in synchrony, the systems should exhibit the dynamics of @; = f(x;.1)



Motivating example

Synchronization of 2 systems: |y, = y; — =y, +9g(t) + u;
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* Linear coupling: |4, = ¢y = 142r€ (y2 — y1)
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Motivating example

Synchronization of 2 systems:

e Linear coupling:

L 5

3

Ui =i — =y +9(t) + u;

U1 = —UuU9 =

1—|— fy2 14-¢

ds

* Nonlinear integral coupling:

U1 =— —uU9 =

ax{l1—s*+¢e,0
Y2 max{l—s“+e, }ds
Y1 2

e Guaranteed convergence rate

y1(t) —

y2(t)] <

e =(t=10) |y (tg) — ya(to)]



Motivating example
. L 4

Synchronization of 2 systems: |y, = y; — 3Yi +9(t) + u;

o || i . _ _ 1+4e _ (Y2f1+4¢ - :
Linear coupling: |, = —q, = . (y2 — 1) = . @S —

Y2 max{1—82+&:,0}
U1 = U2 = f’yl < 4 >5

e Guaranteed convergence rate

Coupling function

y1(t) = y2(8)] < e ="y (to) — ya(to)]



Motivating example
. L 4

Synchronization of 2 systems: | ¢; = y; — Vi +g(t) + ;i

o || inNoc: _ _ 1+4e _ (Y2f1+4¢ - :
Linear coupling: |, = —q, = . (y2 — 1) = . @S —

* Nonlinear integral coupling:

yo(max{1l—s*+4¢,0}
v =2 = y1<2>8

Coupling function

Synchronization is achieved/guaranteed with essentially lower coupling gains




Motivating example

* Lower coupling gains: —Lin

NonLin

* Lower noise sensitivity

* Lower energy needed for
synchronization

b, =112) 3
e, =035 :

Simulation results with measurement noise



Nonlinear integral coupling

Network of dynamic systems
/@**71)

0

/
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Nonlinear integral coupling:

System equations

ur&_» T; = f(-rz, t) + Bu?
yi = Cx;
i=1,...N

u; = Z /yj A(s)ds

Yi



Nonlinear integral coupling

Network of dynamic systems System equations

\y@&/\g u?’_. T = f(-rz, t) + Bu; _:gz
3

/ y; = C;
@“@/J i=1...N

Yj
Nonlinear integral coupling: u; = Z/ A(s)ds

What are the conditions on minimal \(s) and the network graph
to achieve synchronization ?




Nonlinear Integral Coupling — Design tools

System equations Bi-directionally connected systems
uz_> €r; = f($5 t) + Bu, Yi @: :@
yi = C;
i=1,...N

Theorem 1: If there exist P = P” >0, R = RT > 0 and continuous function ¥(s) such that

8_f % T ) _ T n
P—(x)+ —(@)P-2C"Cy(Cx) < —-R, PB=C", VreR

ox Ox

then the nonlinear integral feedback u; = —uy = 5 [ A(s)ds solves the controlled
synchronization problem for any \(s) satistying

[)\[s) > max(0,v(s)), Vs € R, /

— OO0

+oo
A(s)ds < +:>o.]
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Theorem 1: If there exist P = PT >0, R = RT > 0 and continuous function y($) such that

8_f afT T ) _ T n
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ox Ox
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Incremental feedback passivity with a
nonlinear gain function y(s)

Theorem 1: If there exist P >. ¥ >0, R = RT > 0 and continuous function ¥(s) such that

Of oy 4 0" T _ T "
Pax(:c)—l— o ()P —2C" Cy(Cx) < —-R, PB=C", VreR

then the nonlinear integral feedback u; = —uy = f;’f A(s)ds solves the controlled
synchronization problem for any \(s) satistying

[)\(S) > max(0,7(s)), Vs € R, /

— OO0

—+oo
A(s)ds < —|—DCJ.]




Definition 2. System (1) is called incrementally

N O ﬂ | I ﬂ ea r | ﬂteg ral (feedback passive with nonlinear gain y(s) > 0 - denoted as

iFP(—y(s)) - if there exists a C! function S(x) : R" — R, and

: a function p(x) : R" — R, such that for any two inputs ug(t)
/ \ |and up(t) any two solutions x4(t), x,(t) of system (1), for N = 1,
corresponding to these inputs, with outputs y, and y;, satisfy the

{| Incremental feedback passivity witha |} inequality

nonlinear gain function ”/‘(S) iS(xa(t) — () < —p(Xg — Xp) (5)

T T, IV \ —|-(ya—yb)( y(s)ds—l—ua—ub).
Vb

—

Theorem 1: If there exist P >. ¥ >0, R = R” > 0 and continuous function y(s) such that

g % T , L T n
Paaf (x) + o ()P —2C" Cvy(C2x) < —-R, PB=C", VreR

then the nonlinear integral feedback u; = —uy = fyyf A\(s)ds solves the controlled
synchronization problem for any \(s) satistying

[)\[H) > max(0,v(s)), Vs € R, /

— OO0

+oo
A(s)ds < +DO.J




Constructive conditions are available
for systems of the form

= Q(zayat)a y :p(zayat)—l_ua i%
ceR" Ly ueR,t>0

Theorem 1: If there exist P=PT >0, R=RT >0 continuous function () such that

Of oy 4 0" T _ _ T "
Pax(:c)—l— o ()P —2C" Cy(Cx) < —-R, PB=C", VreR

then the nonlinear integral feedback u; = —uy = f;’f A(s)ds solves the controlled
synchronization problem for any \(s) satistying

[,\(S) > max(0,7(s)), Vs € R, /

— OO0

—+oo
A(s)ds < —|—DCJ.]




Theorem Consider system (i@ Suppose there exist (n — 1) x
(n—1)matrices Q = QT > 0 and M = MT > 0 such that inequality |

aq aq’
0z 0z
holds for all (z,y) and t > 0. Let y(y) satisfy
- 0
sze+fg (12)
ay

T
1 aqg  op' op
_ M — el ———
‘|'2 (Qay+ 82) ( elh1)" (Q _V—I_ ﬁz)

for all (z,y) and some € > 0 satisfying
M —el,_q1 > 0. (13)

where [,_1 is the (n — 1) x (n — 1) identity matrix. Then system
is ISFP(—y(s)) with y(s) = max{0. y(s)} and quadratic positive
definite S(x) and p(x)

Constructive conditions are available
for systems of the form

Z= Q(Z,y,t), y = p(z,yqt)—l—uq i%

ceR" Ly ueR,t>0

~

/

'R,

PB=C", VmER”]

fy2 s)ds solves the controlled

[)\[.5') > max(0,v(s)), Vs € R, /

~+ o0

— OO0

A(s)ds < —{—DO.J

«d continuous function () such that
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Conventional methods based on algebraic graph theory are not straightforward to apply
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L1-LL
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Incremental stability of closed-loop nodes (systems):
J“J

—>Two nodes will synchronize if they are driven by the
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“ ) number of asymptotically the same external inputs.
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Extension to larger networks:
sequentional decoloring of network graph

Conventional methods based on algebraic graph theory are not straightforward to apply
Incremental stability of closed-loop nodes (systems):
’(__ '

—>Two nodes will synchronize if they are driven by the
J same number of asymptotically the same external inputs
) —>Two clusters of synchronizing nodes will synchronize

with each other if each node in each cluster has the same
“ ’ number of asymptotically the same external inputs.

/0 o o9

/Q/ > E>/ /



Extension to larger networks:
sequentional decoloring of network graph

Conventional methods based on algebraic graph theory are not straightforward to apply

3 : Incremental stability of closed-loop nodes (systems):
/\)9\9 —>Two nodes will synchronize if they are driven by the
\9 / same number of asymptotically the same external inputs
f | —>Two clusters of synchronizing nodes will synchronize
- o 3 with each other if each node in each cluster has the same
s ’<—>. 5 ’ number of asymptotically the same external inputs.

T Tt T T
O/OA E>o/o/° E>/c:)*/‘i' QO% Ec?/o/o



Extension to larger networks:
sequentional decoloring of network graph

Conventional methods based on algebraic graph theory are not straightforward to apply

3 : Incremental stability of closed-loop nodes (systems):
| )<_ 1 '

v —>Two nodes will synchronize if they are driven by the
\49 same number of asymptotically the same external inputs
3) —>Two clusters of synchronizing nodes will synchronize
K

with each other if each node in each cluster has the same

.6 ’<—>. 5 ’ number of asymptotically the same external inputs.

o T e T
O/OAEZ)/O/O E>/o/° QO% ngo/o E?Q/o

sequential decoloring of network graph



Extension to larger networks:
sequentional decoloring of network graph

Algorithm to determine if
a network graph is sequentially
decolorable

Analysis of cluster
synchronization

LA

sequential decoloring of network graph



Synchronization for larger networks

System equations Network graph
'U/p,_' €T = f(llf,i._‘ IL) -+ B"U,.,j _yz 3/@6— 1
Yi = C$?; f 9

i=1,...N G-I

Theorem 2: If the network graph is sequentially decolorable, then for any coupling
gain function \(s) from Theorem 1, the nonlinear integral coupling

ui= Y /y A(s)ds

JEN;
solves the controlled synchronization problem.



Example:
Synchronization of FitzHugh-Nagumo oscillators

System equations

Zi :%(aer?; —bzf,;) + Aczt cog 0t

T

. 1,3
Yi =Yi — 3Y; — 2 T 1+ U

Network graph Qﬁ AO

Integral coupling

Uy = —us = 3 ;f A(s)ds

A(s):= max{0, e+1—s7}



Example:
Synchronization of FitzHugh-Nagumo oscillators

2
System equations S
. _‘| I ! |
Zi = % (a + y@ bz;) + ==t cos wt 5 . . .
5 ' ' '
; . . .
Network graph @: =@ 3 OZ}
-1 : : '
] O.S " ) _ : i : A ) _
Integral coupling & | ‘ J /\J /Ll J
Y 0 . A
up = —ug = 5 [ M(s)ds 0 500 1000 1500 2000

t

Ve mavw 2 1
A(5):= max{0, e+1—s%} go1 (1 fyi((t)) A(s)ds/(y1(t)—y2(1))



Example:
Synchronization of FitzHugh-Nagumo oscillators

2
S
0 L
-q ' ! '
5 . . .
Synchronization is achieved 50 g’__n/ﬁ/__Jj/_Jj’Jl
through generically zero, but 5 . . .
spiking coupling gain 1 A ' ' '
=~ 0 -
Novel type of synchronization 0—%
0

1000 1500 2000

gon (1 f,j“(i)))\ ds/ yi(t)—ya(t))



Example:

Synchronization of FitzHugh-Nagumo oscillators

+ measurement noise

.
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Lower energy for synchronization



Conclusions

* Nonlinear integral coupling — tool for performance improvement

e Extra flexibility & benefits for synchronization
* Lower sensitivity to measurement noise
* Lower energy required for synchronization

e Constructive analysis and design tools for synchronization:
* Results to design the nonlinear coupling function \(s)
e Sequential decoloring of network graph

* New type of synchronization of FitzHugh-Nagumo neuron models
e Synchronization through spiking coupling gains



Conclusions

* Nonlinear integral coupling — tool for performance improvement
e Extra flexibility & benefits for synchronization
* Lower sensitivity to measurement noise
* Lower energy required for synchronization

/More details in \

 A. Pavloy, E. Steur and N. van de Wouw, Nonlinear integral coupling for
synchronization in networks of nonlinear systems, Automatica, 2022

e E. Steur, A. Pavlov, N. van de Wouw, Design of nonlinear coupling for efficient
synchronization in networks of nonlinear systems, CDC 2023
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