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Constrained Output Regulation: Intuition and Motivations

Constrained Output Regulation. Given a plant P0, a class of references R, and a

set V , solve (when possible) the following output regulation problem:

yv(t)∈V
P0

??? +

−

r∈R

Motivations. Guarantee safety constraints and avoid the windup phenomenon.

Our focus will be on integral control, thus R = constant references.
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Projected Integral Controllers (Lorenzetti & Weiss, 2022)
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Preliminaries

A. Integral Control

A brief review on integral control for

linear and nonlinear systems.

B. Projected Dynamical Systems

How is the operator ΠU defined?
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Integral Control



Integral Control for Linear Systems (Davison, 1976; Morari, 1985)
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Theorem. Let P be a linear plant. Assume that:

(a) P is stable and P(0) is full row rank.

(b) σ (P(0)K) ⊂ C+, i.e., −P(0)K Hurwitz.

Then, there exists a κ > 0 such that for all k ∈ (0, κ) the above closed-loop system

is stable and it exhibits zero tracking error for all constant references r.

Possible choice. Choose K such that K = P(0)−1
right.
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Integral Control for Nonlinear Systems (Desoer & Lin, 1985)
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Theorem. Let P be a nonlinear system. Assume that:

(a) For every constant input u ∈ Rm, Ξ(u) is a uniform GES equilibrium point of P.

(b) The map G is strictly monotone for all v1, v2 ∈ Rm.

Then, there exists a κ > 0 such that if k ∈ (0, κ), then for all constant references

r ∈ Rm the closed-loop system has a GES equilibrium point at which e=0.

Linear Systems. (a) σ(A) ⊂ C−; (b) P(0) +P(0)⊤ strictly positive definite.

5



Integral Control for Nonlinear Systems (Desoer & Lin, 1985)

−

+

y

r

u

Ξ(u)

G(u)

e

P

1
s
kI

Theorem. Let P be a nonlinear system. Assume that:

(a) For every constant input u ∈ Rm, Ξ(u) is a uniform GES equilibrium point of P.

(b) The map G is strictly monotone for all v1, v2 ∈ Rm.

Then, there exists a κ > 0 such that if k ∈ (0, κ), then for all constant references

r ∈ Rm the closed-loop system has a GES equilibrium point at which e=0.

Linear Systems. (a) σ(A) ⊂ C−; (b) P(0) +P(0)⊤ strictly positive definite.

5



The Idea Behind: Singular Perturbations
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Projected Dynamical Systems



Normal and Tangent Cones

Definition. Let U ⊂ Rm be a closed, non-empty, convex set. We define

NU (u) = {z ∈ Rm | ⟨z, v − u⟩ ≤ 0 ∀ v ∈ U} ∀ u ∈ U,

NU (u) = ∅ ∀ u /∈ U.

TU (u) = {s ∈ Rm | ⟨z, s⟩ ≤ 0 ∀ z ∈ NU (u)} ∀ u ∈ U,

TU (u) = ∅ ∀ u /∈ U.
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Operator ΠU(u,w)

Definition. Let U ⊂ Rm be a closed, non-empty, convex set. For every u ∈ U and

w ∈ Rm, we define

ΠU (u,w) = argmin
v∈TU (u)

∥w − v∥.

U

u
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U

u

w
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Projected Dynamical Systems - Definition of Solutions

Definition. Let F ∈ C(Rm;Rm) and U ⊂ Rm be non-empty, closed and convex. A

function u ∈ W 1,1((0, τ);Rm) that satisfies

u̇(t) = ΠU (u(t),−F (u(t))) u(0) = u0 (PDS)

for a.e. t ∈ (0, τ) is called a Carathéodory solution to (PDS).

Uu0 Uu0
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Projected Integral Controllers



Projected Integral Controllers (Lorenzetti & Weiss, 2022)

Classical Integrator

y

+

−

rw
uI

e
k

v
P0K

∫

Projected Integrator

y

+

−

rw
uI

e
k

∫
ΠU

v
P0N

Keywords Safety Constraints, Projected Dynamical Systems, Singular Perturbations.
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Control Problem Formulation



Control Objective

The nonlinear plant P0 to be controlled is described by:

ẋ = f0(x, v), y = g(x),

with f0 ∈ C2(Rn × Rm;Rn), g ∈ C1(Rn;Rp), with m ≥ p.

Control Objective

The control objective is to make the output signal y tracks a constant reference

signal r ∈ Y ⊂ Rp, while making sure that the plant input signal v remains in a

desired compact set V ⊂ Rm (e.g., determined by operational constraints).

12



Closed-Loop System - Equations
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The closed-loop system is described by

ẋ = f0(x,N (uI)), u̇I = ΠU (uI , k(r − g(x))), (CL)

where U ⊂ Rp is compact and convex, N ∈ C2(Rp,Rm), V = N (U), and k > 0.
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Closed-Loop Stability Analysis



Assumption 1

Assumption 1. There exists an open domain V ⊂ Rm and Ξ ∈ C1(V;Rn) such that

f0(Ξ(v), v) = 0 ∀ v ∈ V,

and the equilibrium points {Ξ(v)
∣∣v ∈ V} are uniformly locally exponentially stable.

This means that there exist ε0 > 0, λ > 0 and ρ ≥ 1 such that for each constant

input v0 ∈ V, the following holds: If ∥x(0)− Ξ(v0)∥ ≤ ε0, then for every t ≥ 0,

∥x(t)− Ξ(v0)∥ ≤ ρe−λt∥x(0)− Ξ(v0)∥.

Linear Systems. Let P0 be linear (ẋ = Ax+Bv, y = Cx), Assumption 1 reduces to

A being stable. The function Ξ is given by

Ξ(v) = (−A)−1Bv.
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Assumption 2

Assumption 2. P0 satisfies Assumption 1. Let G(v) := g(Ξ(v)) ∈ C1(V;Rp).There

exist an open set U ⊂ Rp, a function N ∈ C2(U ,V), and µ > 0 such that

⟨G(N (u1))−G(N (u2)), u1 − u2 ⟩ ≥ µ∥u1 − u2∥2

for all u1, u2 ∈ U , i.e., G ◦ N is strictly monotone.

Choice of N . When possible, we suggest the choice N = G−1
right, so that U = G(V).

Linear Systems. Let P0 be linear and N ∈ Rm×p, Assumption 2 reduces to

P0(0)N + (P0(0)N )⊤ being strictly positive definite. The function G is given by

G(v) = CΞ(v) = C(−A)−1Bv = P0(0)v.

15



Assumption 2

Assumption 2. P0 satisfies Assumption 1. Let G(v) := g(Ξ(v)) ∈ C1(V;Rp).There

exist an open set U ⊂ Rp, a function N ∈ C2(U ,V), and µ > 0 such that

⟨G(N (u1))−G(N (u2)), u1 − u2 ⟩ ≥ µ∥u1 − u2∥2

for all u1, u2 ∈ U , i.e., G ◦ N is strictly monotone.

Choice of N . When possible, we suggest the choice N = G−1
right, so that U = G(V).

Linear Systems. Let P0 be linear and N ∈ Rm×p, Assumption 2 reduces to

P0(0)N + (P0(0)N )⊤ being strictly positive definite. The function G is given by

G(v) = CΞ(v) = C(−A)−1Bv = P0(0)v.

15



Mappings Recap
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Main Stability Theorem

Notation. We denote Y = G(N (U)), and, for any r ∈ Y , we define

ur := (G ◦ N )−1(r) xr := Ξ(N (ur)).

Theorem 1. Consider the closed-loop system (CL), where P0 satisfies Assumption 2.

Then there exists a κ > 0 such that if the gain k ∈ (0, κ], then for any r ∈ Y ,

(Ξ(N (ur)), ur) is a (locally) exponentially stable equilibrium point of the

closed-loop system (CL), with state space X = Rn × U . If the initial state [ x0
u0 ] ∈ X,

of the closed-loop system satisfies u0 ∈ U and ∥x0 − Ξ(N (u0))∥ ≤ ε0, then

x(t)→Ξ(N (ur)), uI(t)→ur, y(t)→ r,

and this convergence is at an exponential rate.
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Intuition of the Result
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Intuition of the Proof - Singular Perturbations

Boundary-Layer (fast) System

yuI v
N P0

ẋ = f0(x,N (uI)),

where uI ∈ U is fixed.

Reduced (slow) Model

y

+

−

r
uI ∫

ΠU

G ◦N

duI
ds

= ΠU (uI , r −G(N (uI))),

where s = k · t slow time-scale.
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Constrained Power Regulation for a

Grid-Connected Synchronverter



A Grid-Connected Inverter with an LC Filter

The above inverter is controlled as a synchronverter, i.e., as a synchronous generator.

P. Lorenzetti, Z. Kustanovich, S. Shivratri and G. Weiss, “The equilibrium points and stability of grid-connected

synchronverters,” IEEE Transactions on Power Systems, 2022. 20



Closed-Loop Control Scheme
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Assumption 1 - The set V (Ξ : V → R4)
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Assumption 2 - The sets U and U when N = G−1
right
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Assumption 2 - The sets U when N = K ∈ R2×2
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Numerical Results - The Comparison

Classical I control loop
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Numerical Results - The Integrator State uI and the Set U
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Numerical Results - The Plant Input v and the Set V
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Conclusion & Perspectives



Conclusion

Projected Integrator

Projected Systems ΠU

Safety Constraints

Stability Analysis

Singular Perturbations

Gain N = G−1
right

Power Systems

Power Regulation for a

Synchronverter
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Possible Future Directions

Time-Varying Constraints. In some power systems applications, we would like

u̇I = ΠU(t)(uI , w).

Weaker Notions of Stability. What can we say on aGAS systems?

Infinite-Dimensional Systems. Preliminary results for well-posed SISO linear systems.
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Thanks for your attention!
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