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Motivation : 

A  neurophysiological imitation game


Question: how to emulate the biological oscillator D 

with an artificial circuit replacing one of the two neurons (A)  ?



The question: 

how to regulate without calibration ?

The calibration solution:

Tune the parameters of the artificial neuron to minimise the 
mismatch between the natural and artificial behaviors. 


Claim: the internal model principle requires calibration


Fact: this cannot work in practice because the biological neuron 
is highly variable.
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1. An academic example


2. Neuromorphic learning as a regulation problem


3. Lesson from the internal model principle : 
regulation requires calibration


4. Event-based regulation




Canonical example: Fitzhugh Nagumo circuit
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R. FitzHugh, “Impulses and physiological states in theoretical
models of nerve membrane,” Biophysical journal, vol. 1, no. 6, p. 445, 1961.

J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse
transmission line simulating nerve axon,” Proceedings of the IRE, vol. 50, no. 10, pp. 2061–2070, 1962.

Referred to as “Bonhoeffer-van der Pol model”  by FitzHugh after Van der Pol (1926).

A circuit that reproduces the mechanism of nerve impulse:

The mixed feedback representation of 
Fitzhugh Nagumo circuit
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The negative feedback circuit has fading memory

The positive feedback (or negative conductance) enables memory

The mixed feedback circuit has memory ‘at scale’
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The circuit representation of a neuron
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Each current source controls the circuit conductance in a specific temporal window

Tuning-modulating-learning the weights determines the circuit behavior 



The circuit representation of a neuron
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1. General physical representation of neural networks (including biophysical 
conductance-based models)


2. The role of internal conductances is often neglected relative to external 
(synaptic) conductances. It shouldn’t. 


3. The restriction to static current sources corresponds to Hopfield Neural 
Nets.  NNNs can be regarded as dynamical Hopfield Neural Nets.


The mixed feedback representation of a NNN
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1. The “plant” represents the physical storage (RC network)

2. The “controller” is a parallel filter bank of voltage-gated current sources

3. “Monotone’’ = generalization of ‘positive conductance’ (Minty, 1960)



The significance of mixed feedback
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1. Monotone circuits have fading memory; negative feedback preserves 
monotonicity


2. Positive feedback enables memory.

3. Mixed feedback enables memory at scale.

More meaningful than the traditional distinction between feedforward and 
recurrent networks. 12
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Feedback machine learning

NNNs have the representation of a passive RC circuit in feedback with a one-layer 
feedforward layer. 


The feedback loop is a substitute for many layers.


The important distinction is not between feedforward and recurrent, but rather 
between fading memory and memory.


NNNs provide a  dynamic generalisation of Hopfield Neural Networks.
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Neuromorphic Learning

Neuromorphic learning = adaptive control = neuromodulation

50 years of research in engineering and in neuroscience to leverage from …



Adaptive Control

A theory developed in the 70s for linear systems.


The starting point : 

Adaption (= Learning) is ‘easy’ under three conditions :  

(i) linear parametrisation (ii) stable inverse (iii) relative degree one

NNNs are “easy” to adapt

The starting point : 

Adaption (= Learning) is ‘easy’ under three conditions :  

(i) linear parametrisation : maximal conductances               


(ii) stable inverse : I = difference of monotone (V)


(iii)relative degree one: RC has relative degree one !
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Model reference Adaptive Control

Consider a reference trajectory

generated by a reference conductance  

V
I

Ic Ip
� RC

One layer

Neural

Network

g

The learning rule is a linear regressor driven by the prediction error
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e(t) = Vref (t)� V (t)

A realm of learning rules

Recursive Least Squares estimation (RLS)


Least Mean Square estimation (LMS)


Stochastic gradient 


MIT rule


Hebbian learning


…

All those learning rules proceed from (approximately) regressing the linear 
parameters from the residual error.


Simplifications rely on time-scale separation and distributed computation.



Some references

Current research questions : 

robustness to uncertainty, scalability, circuit implementations

T.B. Burghi, R. Sepulchre. Online estimation of biophysical neural networks, 

to appear in IEEE Transactions on Automatic Control. (https://arxiv.org/abs/2111.02176)


T. B. Burghi, T. O'Leary, and R. Sepulchre. Distributed online estimation of biophysical neural networks.  

61st IEEE Conference on Decision and Control, Cancun, Mexico, 2022. 


R. Schmetterling, Th. Burghi, R. Sepulchre. Adaptive Conductance Control. 

Annual Reviews in Control Volume 54, 2022, Pages 352-3622


R. Schmetterling, Th. Burghi, R. Sepulchre.  Robust Online Estimation of Biophysical Neural Circuits”.

62nd IEEE Conference on Decision and Control, Singapore, 2023.
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https://arxiv.org/abs/2111.02176#
https://arxiv.org/abs/2111.02176
https://arxiv.org/abs/2204.01472
https://www.sciencedirect.com/science/article/pii/S1367578822000918


Regulation as synchrony
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Regulation can be defined as synchrony between a “reference 
behavior” and a “controlled behavior”.


Synchronisation is a general paradigm for regulation, 
adaptation, learning, observer design, …

Synchrony as contraction
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Only one methodological framework to study synchronisation: 
contraction of the controlled behavior to the reference behavior.


The two conditions of regulation:


1. The error system is contractive

2. e=0 is solution of the closed-loop behavior


This is matching the exact original definition of regulation :



The consequence of the IM principle:

Any design that proves regulation through regulation satisfies 
the internal model principle.


The internal model principle is a calibration theory: the internal 
model must be calibrated to the exosystem.


Calibration is not an artefact of our design methods. It is a 
necessary condition of robust synchronisation.


Where we stand with neuromorphic learning:

Neuromorphic neural networks belong to “easy” regulation 
problems


The challenge is not the regulation algorithm. Rather, the 
challenge is the robustness of the regulation algorithm to 
miscalibration.


Calibration is necessary but also elusive in variable 
environments.


How do animals regulate from sloppy internal models ?
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Event synchronisation without calibration
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Rapid and robust synchronization via weak synaptic coupling, J.-G. Lee, RS, in press



Event synchronisation without calibration
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Rapid and robust synchronization via weak synaptic coupling, J.-G. Lee, RS, in press

 Requires the combination of excitable nodes and synaptic coupling.


 Widely observed in biological neuronal populations


 First analysed for two neurons by Somers & Kopell (1993)


 Systems are nearly decoupled away from the events; “high-gain” 
coupling localised near the events 


Towards an internal model principle for 
event-based systems


 No synchrony for the continuous-time dynamics, but “classical” 
regulatory design applied to “excitable” systems 


 Synchrony (and the internal model principle) apply only to the discrete 
event map


 Hierarchy of events leads to hierarchy of regulation problems.


 A general solution for neuromorphic learning, consistent with what is 
observed in the animal world


 A control theoretic framework for event-based regulation theory.


An internal model principle is necessary and sufficient for linear output synchronization

P. Wieland, R. Sepulchre, F. Allgöwer, Automatica, 2011


Phase synchronization through entrainment by a consensus input

P, Wieland, G. Schmidt, R. Sepulchre, IEEE CDC, 2010.

https://scholar.google.fr/citations?view_op=view_citation&hl=en&user=e1jfDwMAAAAJ&citation_for_view=e1jfDwMAAAAJ:blknAaTinKkC
https://ieeexplore.ieee.org/abstract/document/5717783/?casa_token=LTwbXAM6IUQAAAAA:xTbteanz13raFAEQHPX3Gp_qSnGVfst6k4l8HDILZG8ZAefNZptavxENoUb8K0TOXWI9Bdth-Eo


Conclusions


29

1. Synchronisation is a general framework for 
nonlinear regulation


2. Neuromorphic learning belongs to the class of 
“easy” regulation problems


3. IM principle: regulation requires calibration


4.  Bio-inspired solution for robust regulation:   

     event-based regulation


THANK YOU !

Interested in more details ?


3 day course on mixed feedback systems, Nov 29-Dec 1, Leuven, Belgium:


                   https://sites.uclouvain.be/socn/drupal/socn/node/363


