Harmonic-based modeling and control

Pierre Riedinger
joint work with Jamal Daafouz
PhD students: Nicolas Blin, Maxime Grosso, Flora Vernerey

©

Context and motivations

- Fact: Electrical actuation chains are subject to undesirable harmonic disturbances and/or non-linear resonance phenomena.

```
Out of control because of harmonics - an analysis of the harmonic
response of an inverter locomotive, E. Mollersted et al. IEEE
Control Systems Magazine, 2000.
```

Swiss locomotive stopped due to high harmonic currents:

- Instabilities caused by interactions between systems
- The modeling of the electrical chain was insufficient.

Harmonic control allows to:

- Design stabilizing control for periodic systems
- Take into account and cancel undesirable harmonic content

State of the art of harmonic modeling

Earlier and seminal papers (mainly developed in Electrical Engineering):

- General framework:
- Generalized State-Space Averaging (GSSA) [S. R. Sanders \& al. (1991)]
- Dynamic Phasors (DP) [P. Mattavelli, G. C. Verghese \& A. M. Stankovic (1997)]
- Linear Time Periodic (LTP) systems
- Sur les équations linéaires à coefficients périodiques [G. Floquet, (1883)].
- Extended Harmonic Domain (EHD) [M. Madrigal (2001)]
- Dynamic Harmonic Domain (DHD) [J. J. Chavez \& A. Ramirez (2008)]
- Harmonic State Space (HSS) [N. M. Wereley (1990)]

In [Blin \& al. (EJC 2020)], we show that all these harmonic modeling methods are equivalent and are based essentially on the same tool:
a Sliding Fourier Decomposition (SFD) over a window of length T.

Sliding Fourier Decomposition over a window of length T

Signal x

Phasors $X=\mathcal{F}(x)$

More precisely:

$$
\begin{aligned}
\mathcal{F}: & L_{\text {loc }}^{2}(\mathbb{R}, \mathbb{C}) \rightarrow L_{\text {loc }}^{\infty}\left(\mathbb{R}, \ell^{2}(\mathbb{C})\right) \\
& x \mapsto X
\end{aligned}
$$

where the components of the time varying infinite sequence $X=\left(\cdots, X_{-1}, X_{0}, X_{1}, \cdots\right)$ are defined by:

$$
X_{\mathrm{k}}(t):=\frac{1}{T} \int_{t-T}^{t} x(\tau) e^{-\mathrm{j} \omega \mathrm{k} \tau} d \tau \text { (time varying Fourier coef.) with } \omega:=\frac{2 \pi}{T} \text {. }
$$

X_{k} is called k-th phasor (harmonic) of X.
If $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a vector function then $X:=\left(\mathcal{F}\left(x_{1}\right), \mathcal{F}\left(x_{2}\right), \cdots, \mathcal{F}\left(x_{n}\right)\right)$

How to determine a Harmonic Model ?

Consider a differential equation

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{1}
\end{equation*}
$$

Formally, its harmonic model is determined by:

$$
\begin{equation*}
\dot{X}=\mathcal{F}(f(t, x))-\mathcal{N} X \tag{2}
\end{equation*}
$$

where \mathcal{N} is a diagonal operator.
But there are important issues not addressed in the previous literature:
(1) How to reconstruct exactly x, if it exists, from X ? (inverse and functional space invoked)
(2) Under which conditions we have: $(1) \Leftrightarrow(2)$? (bijection)

These questions are essential for analysis and synthesis purposes in the harmonic domain.

For example, System (2) has trajectories that have no counterpart in (1).
Thus, if we design a harmonic control U, there is no guarantee that $u=\mathcal{F}^{-1}(U)$ exists!

Outline

(1) Harmonic modeling - a mathematical framework
(2) Analysis and Control design
(1) Solving harmonic Lyapunov, Sylvester and Riccati equations
(2) Solving harmonic Toeplitz Block LMIs (TBLMIs)
(3) Applications
(1) Rejection of harmonic disturbances on a three-phase rectifier bridge (SAFRAN)
(2) Optimal state feedback design for LTP systems by solving TBLMIs

Mathematical framework

Bijection between functional spaces

Theorem 1 (Coincidence Condition)

There exists a representative $x \in L_{\text {loc }}^{2}\left(\mathbb{R}, \mathbb{C}^{n}\right)$ of X, with $X \in L_{\text {loc }}^{\infty}\left(\mathbb{R}, \ell^{2}\left(\mathbb{C}^{n}\right)\right)$, if and only if, X is absolutely continuous and fulfills for any $k \in \mathbb{Z}$:

$$
\begin{equation*}
\dot{X}_{k}(t)=\dot{X}_{0}(t) e^{-\mathrm{j} \omega k t} \text { a.e. } \tag{3}
\end{equation*}
$$

X is said to belong to $H \subset C^{a c}\left(\mathbb{R}, \ell^{2}\left(\mathbb{C}^{n}\right)\right)$

Reconstruction formula

Theorem 2 (punctual convergence)
If $x \in C_{p w}^{1}$ (or $C_{p w}^{0}$ with bounded variations), then the reconstruction formula is provided by:

$$
\begin{equation*}
x(t)=\sum_{p=-\infty}^{+\infty} X_{p}(t) e^{\mathrm{j} \omega p t}+\frac{T}{2} \dot{X}_{0}(t) \tag{4}
\end{equation*}
$$

except at points of discontinuity of x for which left and right limits exist. In addition, if $x \in C^{0}$, the equality (4) holds everywhere.

Proofs: "Necessary and sufficient conditions for harmonic control" [IEEE TAC 2022].

Harmonic systems

Consider nonlinear dynamical systems described by:

$$
\begin{equation*}
\dot{x}=f(t, x), \quad x(0):=x_{0} \tag{5}
\end{equation*}
$$

Theorem 3

Under weak assumptions, x is a solution of the differential equation (5) in the Carathéodory sense, if and only if, $X=\mathcal{F}(x) \in H$ is a solution of:

$$
\begin{equation*}
\dot{X}=\mathcal{F}(f(t, x))-\mathcal{N} X, \quad X(0):=\mathcal{F}(x)(0) \tag{6}
\end{equation*}
$$

with $\mathcal{N}:=I d_{n} \otimes \operatorname{diag}(\mathrm{j} \omega k, k \in \mathbb{Z})$. (Infinite dimensional system !)
Proofs: "Necessary and sufficient conditions for harmonic control" [IEEE TAC 2022].

Interest for analysis and control:

- T-periodic systems becomes time invariant in harmonic domain \rightarrow All time invariant control design methods can be a priori applied
- A T-periodic trajectory corresponds to an equilibrium in the harmonic domain

How to determine $\mathcal{F}(f(t, x))$?

- Define Toeplitz Block (TB) transformation $\mathcal{T}(\cdot)$ of matrix function $A_{n \times m}:=\left(a_{i j}\right)$

$$
\text { by: } \quad \mathcal{A}:=\mathcal{T}(A)=\left[\begin{array}{ccc}
\mathcal{A}_{11} & \ldots & \mathcal{A}_{1 m} \\
\vdots & & \vdots \\
\mathcal{A}_{n 1} & \ldots & \mathcal{A}_{n m}
\end{array}\right]
$$

Figure: 2×2 TB representation
with $\mathcal{A}_{i j}=\mathcal{T}\left(a_{i j}\right):=\left[\begin{array}{ccccc}\ddots & & \vdots & & \ddots \\ \cdots & a_{i j, 0} & a_{i j,-1} & a_{i j,-2} & \\ & a_{i j, 1} & a_{i j, 0} & a_{i,-1} & \ldots \\ \because & a_{i j, 2} & \vdots & a_{i j, 0} & \ddots\end{array}\right],(\infty \times \infty$ Toeplitz matrix $)$
where $a_{i j, k}, k \in \mathbb{Z}$ refers to the phasors (Fourier coef.) of $a_{i j}$.

Property 1

- matrix-vector product: $\mathcal{F}(A x)=\mathcal{T}(A) \mathcal{F}(x)=\mathcal{A} X$
- matrix-matrix product: $\mathcal{T}(A B)=\mathcal{T}(A) \mathcal{T}(B)=\mathcal{A B}$

Useful when $f(t, x)$ defines a time-periodic polynomial systems !

Property 2

- $A \in L^{\infty}([0 T])$ if and only if $\mathcal{A}:=\mathcal{T}(A)$ is a constant and bounded on ℓ^{2} operator

$$
\|\mathcal{A}\|_{\ell^{2}}:=\sup _{\|X\|_{\ell^{2}}=1}\|\mathcal{A} X\|_{\ell^{2}}=\|A\|_{L^{\infty}}
$$

Example: Harmonic model of LTP systems

Consider $A \in L^{2}([0 T])$ and $B \in L^{\infty}([0 T])$ T-periodic matrices. x is the unique solution associated with $u \in L_{l o c}^{2}$ of the LTP system,

$$
\begin{equation*}
\dot{x}=A(t) x(t)+B(t) u(t), \quad x(0):=x_{0} \tag{7}
\end{equation*}
$$

if and only if $X=\mathcal{F}(x) \in H$ is the unique solution associated with $U:=\mathcal{F}(u) \in H$ of the LTI system

$$
\begin{equation*}
\dot{X}=(\mathcal{A}-\mathcal{N}) X+\mathcal{B} U, \quad X(0):=\mathcal{F}(x)(0) \tag{8}
\end{equation*}
$$

where $\mathcal{A}:=\mathcal{T}(A)$ and $\mathcal{B}:=\mathcal{T}(B)$.
(1) How to perform a stability analysis?
(2) How to design a state feedback $U:=-\mathcal{K} X$?

Harmonic Lyapunov, Sylvester and Riccati Equations

Theorem 4 (Harmonic Lyapunov equation)

Assume that $A \in L^{2}\left([0 T], \mathbb{R}^{n \times n}\right)$ is a T-periodic matrix function and let $Q \in L^{\infty}([0 T])$ be a T-periodic symmetric and positive definite matrix function. P is the unique T-periodic symmetric positive definite solution of the periodic Lyapunov differential equation:

$$
\begin{equation*}
\dot{P}(t)+A^{\prime}(t) P(t)+P(t) A(t)+Q(t)=0 \tag{9}
\end{equation*}
$$

if and only if $\mathcal{P}=\mathcal{T}(P)$ is the unique hermitian and positive definite solution of the algebraic Lyapunov equation:

$$
\begin{equation*}
(\mathcal{A}-\mathcal{N})^{*} \mathcal{P}+\mathcal{P}(\mathcal{A}-\mathcal{N})+\mathcal{Q}=0 \tag{10}
\end{equation*}
$$

where $\mathcal{Q}:=\mathcal{T}(Q)$ is hermitian positive definite and $\mathcal{A}:=\mathcal{T}(A)$. Moreover, \mathcal{P} is a bounded operator on ℓ^{2}.

In practice, solving an infinite dimensional problem implies to solve a truncated finite-dimensional one with a consistent scheme.

Solving Harmonic Lyapunov equation

Main idea: Take advantage of the Toeplitz structure of the infinite dimensional problem and solve a finite-dimensional r-truncated version

Theorem 5 (Infinite dimensional solution)
Assume that $A \in L^{\infty}\left([0 T], \mathbb{R}^{n \times n}\right)$ and $(\mathcal{A}-\mathcal{N})$ is invertible.
The phasor $\mathbf{P}:=\mathcal{F}(P)$ associated with the solution $\mathcal{P}:=\mathcal{T}(P)$ of the infinite-dimensional harmonic Lyapunov equation is given by:

$$
\begin{equation*}
\operatorname{col}(\mathbf{P})=-\left(I d_{n} \otimes(\mathcal{A}-\mathcal{N})^{*}+I d_{n} \circ \mathcal{A}^{*}\right)^{-1} \operatorname{col}(\mathbf{Q}) \tag{11}
\end{equation*}
$$

where $I d_{n} \circ \mathcal{A}:=\left(\begin{array}{ccc}I d_{n} \otimes \mathcal{A}_{11} & \cdots & I d_{n} \otimes \mathcal{A}_{1 n} \\ \vdots & \ddots & \vdots \\ I d_{n} \otimes \mathcal{A}_{n 1} & \cdots & I d_{n} \otimes \mathcal{A}_{n n}\end{array}\right)$ and $\mathbf{Q}:=\mathcal{F}(Q)$.

Definition 6 (r-truncation operator Π_{r})

- for a phasor vector $X:=\mathcal{F}(x): \Pi_{r}(X):=\left(X_{1,-r: r}, X_{2,-r: r}, \cdots, X_{n,-r: r}\right)$
- for $n \times m$ infinite-dimensional TB matrix $\mathcal{A}:=\mathcal{T}(A)$

$$
\Pi_{r}(\mathcal{A}):=\left[\begin{array}{ccc}
\Pi_{r}\left(\mathcal{A}_{11}\right) & \ldots & \Pi_{r}\left(\mathcal{A}_{1 m}\right) \\
\vdots & \ldots & \vdots \\
\Pi_{r}\left(\mathcal{A}_{n 1}\right) & \ldots & \Pi_{r}\left(\mathcal{A}_{n m}\right)
\end{array}\right] \quad n(2 r+1) \times m(2 r+1)
$$

$$
\text { where } \Pi_{r}\left(\mathcal{A}_{i j}\right):=\left(\begin{array}{ccc}
a_{i j, 0} & \cdots & a_{i j,-2 r} \\
\vdots & \ddots & \vdots \\
a_{i j, 2 r} & \cdots & a_{i j, 0}
\end{array}\right)(2 r+1) \times(2 r+1) \text { principal submatrix of } \mathcal{A}_{i j} \text {. }
$$

Solving Harmonic Lyapunov equation

- Define for any given r, the r-truncated solution $\tilde{\mathbf{P}}_{r}$ to harmonic Lyapunov equation as

$$
\begin{equation*}
\operatorname{col}\left(\tilde{\mathbf{P}}_{r}\right):=-\left(I d_{n} \otimes \Pi_{r}(\mathcal{A}-\mathcal{N})^{*}+I d_{n} \circ \Pi_{r}(\mathcal{A})^{*}\right)^{-1} \operatorname{col}\left(\Pi_{r}(\mathbf{Q})\right) \tag{12}
\end{equation*}
$$

This is a linear problem of dimension $n^{2}(2 r+1)$!

Theorem 7 (Consistency)

For any given $\epsilon>0$, there exists r_{0} such that for any $r \geq r_{0}$:

$$
\left\|P-\tilde{P}_{r}\right\|_{L^{\infty}}=\left\|\mathcal{P}-\tilde{\mathcal{P}}_{r}\right\|_{\ell^{2}}<\epsilon
$$

with $\mathcal{P}:=\mathcal{T}(P)$ and $\tilde{\mathcal{P}}_{r}:=\mathcal{T}\left(\tilde{P}_{r}\right)$.

- Similar results for Harmonic Sylvester and Riccati equations as well as a Spectral Characterization (Floquet Factorization revisited) can be found in "Solving Infinite-Dimensional Harmonic Lyapunov and Riccati equations", [IEEE TAC 2023] and in "Harmonic pole placement" [CDC 2022].

What about harmonic LMIs ?

- How to solve the infinite dimensional harmonic Lyapunov inequality:

$$
\begin{equation*}
(\mathcal{A}-\mathcal{N})^{*} \mathcal{P}+\mathcal{P}(\mathcal{A}-\mathcal{N})+\mathcal{Q}<0 \tag{13}
\end{equation*}
$$

and more generally a semidefinite optimization problem:

$$
\begin{align*}
& \min _{\mathcal{P}=\mathcal{P}^{*}>0} \operatorname{Tr}_{0}(\mathcal{P}) \tag{14}\\
& \mathcal{L}\left(\mathcal{P} ; \mathcal{A}_{s}, s \in \mathbb{S}\right)<0,
\end{align*}
$$

where
(1) $\operatorname{Tr}_{0}(\mathcal{P})=\sum_{i=1}^{n} P_{i i, 0}$ (average value of $\operatorname{tr}(P(t))$ over a period T)
(2) S is a finite set of subscripts,
(3) $\mathcal{A}_{s}:=\mathcal{T}\left(A_{s}\right)$ refers to the entries with $A_{s} \in L^{\infty}([0 T]) \equiv \mathcal{A}_{s}$ bounded on ℓ^{2}.
(9) \mathcal{P} and $\mathcal{L}\left(\mathcal{P} ; \mathcal{A}_{s}, s \in \mathbb{S}\right)$ are bounded on ℓ^{2}

Remark: $\operatorname{tr}_{0}\left(\mathcal{M}^{*} \mathcal{M}\right)^{\frac{1}{2}}$ is a norm that satisfies: $\|\mathcal{M}\|_{\ell^{2}} \leq \operatorname{tr}\left(\mathcal{M}^{*} \mathcal{M}\right)^{\frac{1}{2}} \leq \sqrt{n}\|\mathcal{M}\|_{\ell^{2}}$

Main ideas

- To approximate \mathcal{P}, can we solve for a given r :

$$
\begin{equation*}
\Pi_{r}\left[(\mathcal{A}-\mathcal{N})^{*} \mathcal{P}+\mathcal{P}(\mathcal{A}-\mathcal{N})+\mathcal{Q}\right]<0 ? \tag{15}
\end{equation*}
$$

Two main difficulties:
(1) Difficulty 1: How to determine $\Pi_{r}(\mathcal{A B})$?

Product of finite dimensional Toeplitz matrices is not Toeplitz

(1) Explicit expression of $E(\mathcal{A}, \mathcal{B})$ is known (implies Hankel Bloc matrices defined from A, B).
(2) $E(\mathcal{A}, \mathcal{B})$ can be exactly computed only if \mathcal{A} or \mathcal{B} are banded TB.

Solution: Band and Truncate (possible since $A_{k} \rightarrow 0,|k| \rightarrow+\infty$)
(2) Difficulty 2: If all TB matrices in (15) are now replaced by banded TB matrices, how does the solution obtained compare with the original solutions?

- Non-uniqueness of the solution complicates the problem

Solution: Convex optimization problems have generally an unique solution

Solving TBLMI

- Define $\mathcal{A}_{b(p)}$ the p-banded version of \mathcal{A} obtained by deleting all its phasors of order higher than p
- Define the finite dimensional problem:

For given p, q, r, solve

$$
\begin{align*}
& \min _{\mathcal{P}=\mathcal{P}^{*}} \operatorname{Tr}_{0}(\mathcal{P}), \quad \Pi_{r}(\mathcal{P})>0 \tag{16}\\
& \Pi_{r}\left[\mathcal{L}\left(\mathcal{P} ; \mathcal{A}_{s_{b(p)}}, s \in \mathbb{S}\right)\right]<0, \quad \mathcal{P}_{i j}, k=0,|k|>q
\end{align*}
$$

This is a $\frac{n(n+1)}{2}(2 q+1)$ dimensional problem if \mathcal{P} is $n \times n$ TB.

Theorem 8 (Consistency)

Assume Problem (14) has a unique solution $\hat{\mathcal{P}}$ bounded on ℓ^{2}. For any $\epsilon>0$, there exist p, q and r_{0} such that for any $r>r_{0}$, the solution $\hat{\mathcal{P}}_{p, q, r}$ to (16) satisfies:

$$
\begin{equation*}
\left\|\hat{P}_{p, q, r}-\hat{P}\right\|_{L^{\infty}}=\left\|\hat{\mathcal{P}}_{p, q, r}-\hat{\mathcal{P}}\right\|_{\ell^{2}}<\epsilon \tag{17}
\end{equation*}
$$

with $\hat{\mathcal{P}}:=\mathcal{T}(\hat{P})$ and $\hat{\mathcal{P}}_{p, q, r}:=\mathcal{T}\left(\hat{P}_{p, q, r}\right)$.
Proofs: "On solving infinite-dimensional Toeplitz Block LMIs" [CDC 2023].

Case study: Harmonic control of three-phase rectifier bridge (Safran)

Bilinear system equations (in balanced mode and abc frame representation):

$$
\begin{equation*}
\dot{x}=A x+G(x) d+B v \tag{18}
\end{equation*}
$$

- State: $x=\left(i_{\mathrm{abc}}, v_{\mathrm{dc}}\right)$,
- Control: $d=d_{\text {abc }}$ (duty cycle)
- Input: $v=\left(e_{\mathrm{abc}}, i_{\mathrm{dc}}\right)$,
with
Figure: Grid tied AC/DC converter with load represented as current source

$$
\begin{array}{lr}
A=\left[\begin{array}{cc}
-\frac{r}{L} l_{3} & 0 \\
0 & 0
\end{array}\right], & G(x)=\left[\begin{array}{c}
\frac{C_{33}}{L} v_{\mathrm{dc}} \\
\frac{i_{\mathrm{abc}}}{C}
\end{array}\right], \\
B=\left[\begin{array}{cc}
\frac{I_{3}}{L} & 0 \\
0 & -\frac{1}{C}
\end{array}\right] \quad C_{33}=\left[\begin{array}{ccc}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right]
\end{array}
$$

Assume state x is measured.

Control objectives

(1) Primary objectives: under T-periodic load or grid perturbation:

- Maintain the DC bus voltage mean value at a given reference $v_{d c_{r e f}}$,
- Maximize power factor: i_{q} mean value must be maintained to 0 .
(2) Secondary objectives: Reduce Total Harmonic Distortion (THD) on $i_{\text {abc }}$ to avoid AC grid pollution

Retained scenario: Reject (2, 4, 5, 7)-th harmonics on $i_{\text {abc }}$ due to 3-rd and 6-th harmonic perturbations on $i_{\text {dc }}$ (load perturbations)

Park's transformation: $i_{d q 0}=\left[\begin{array}{c}i_{d} \\ i_{q} \\ i_{0}\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}\cos (\omega t) & \cos \left(\omega t-\frac{2 \pi}{3}\right) & \cos \left(\omega t+\frac{2 \pi}{3}\right) \\ -\sin (\omega t) & -\sin \left(\omega t-\frac{2 \pi}{3}\right) & -\sin \left(\omega t+\frac{2 \pi}{3}\right. \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right] i_{\mathrm{abc}}$
where ω is the pulsation of the source grid voltage

Harmonic model of the AC/DC Converter

- Associated harmonic model is an infinite dimensional bilinear system given by:

$$
\begin{equation*}
\dot{X}=(\mathcal{A}-\mathcal{N}) X+\mathcal{G}(X) D+\mathcal{B} V \tag{19}
\end{equation*}
$$

with

$$
\begin{aligned}
& X=\left(I_{a}, I_{b}, I_{c}, V_{\mathrm{dc}}\right)=\mathcal{F}(x) \\
& D=\left(D_{a}, D_{b}, D_{c}\right)=\mathcal{F}\left(d_{\mathrm{abc}}\right) \\
& V=\left(E_{a}, E_{b}, E_{c}, I_{\mathrm{dc}}\right)=\mathcal{F}\left(e_{a b c}, i_{\mathrm{dc}}\right)
\end{aligned}
$$

and where

$$
\mathcal{A}:=\left[\begin{array}{cc}
-\frac{r}{L} I_{3} \otimes \mathcal{I} & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{B}:=\left[\begin{array}{cc}
\frac{I_{3} \otimes \mathcal{I}}{L} & 0 \\
0 & -\frac{\mathcal{I}}{C}
\end{array}\right], \quad \mathcal{G}(X):=\left[\begin{array}{c}
\frac{C_{33} \otimes \mathcal{V}_{\mathrm{dc}}}{L} \\
\frac{\mathcal{I}_{\mathrm{abc}}{ }^{*}}{C}
\end{array}\right]
$$

with $\mathcal{V}_{\mathrm{dc}}=\mathcal{T}\left(v_{\mathrm{dc}}\right), \mathcal{I}_{\mathrm{abc}}=\mathcal{T}\left(i_{\mathrm{abc}}\right)$.

Harmonic stabilizing control

- Consider an equilibrium $\left(X^{e}, D^{e}, V^{e}\right)$ given by:

$$
\begin{equation*}
0=(\mathcal{A}-\mathcal{N}) X^{e}+\mathcal{G}\left(X^{e}\right) D^{e}+\mathcal{B} V^{e} \tag{20}
\end{equation*}
$$

- The dynamic of the error $\bar{X}=X-X^{e}$ satisfies:

$$
\begin{equation*}
\dot{\bar{X}}=\left(\mathcal{A}+\mathcal{A}\left(\mathcal{D}^{e}\right)-\mathcal{N}\right) \bar{X}+\mathcal{G}(X) \bar{D} \tag{21}
\end{equation*}
$$

where $\bar{D}=D-D^{e}$ and $\mathcal{A}\left(\mathcal{D}^{e}\right)=\left[\begin{array}{cc}0 & \frac{\left(C_{33} \otimes \mathcal{I}\right) \mathcal{D}^{e}}{L} \\ \frac{\mathcal{D}^{e *}}{C} & 0\end{array}\right]$ with $\mathcal{D}^{e}=\mathcal{T}\left(D^{e}\right)$.

Theorem 9 (Stabilizing control)

Assume $\left(\mathcal{A}+\mathcal{A}\left(\mathcal{D}^{e}\right)-\mathcal{N}\right)$ is Hurwitz. Consider \mathcal{P} solution to the Lyapunov equation:

$$
\begin{equation*}
\left(\mathcal{A}+\mathcal{A}\left(\mathcal{D}^{e}\right)-\mathcal{N}\right)^{*} \mathcal{P}+\mathcal{P}\left(\mathcal{A}+\mathcal{A}\left(\mathcal{D}^{e}\right)-\mathcal{N}\right)+\mathcal{Q}=0 \tag{22}
\end{equation*}
$$

with $\mathcal{Q}=\mathcal{T}(Q)$ and $Q \in L^{\infty}([0 T]), Q=Q^{\prime}>0$.
For any $H_{1} \in L^{\infty}([0 T]), H_{1}=H_{1}^{\prime}>0$, the state feedback control law given by:

$$
\begin{equation*}
D=D^{e}-\mathcal{H}_{1} \mathcal{G}^{*}(X) \mathcal{P}\left(X-X^{e}\right) \tag{23}
\end{equation*}
$$

where $\mathcal{H}_{1}=\mathcal{T}\left(H_{1}\right)$, stabilizes globally and asymptotically the state X to X^{e}.

Integral actions

- Improve the design by forwarding control ${ }^{1}$

$$
\begin{align*}
& \dot{\bar{X}}=\left(\mathcal{A}+\mathcal{A}\left(\mathcal{D}^{e}\right)-\mathcal{N}\right) \bar{X}+\mathcal{G}(X) \bar{D} \\
& \dot{Z}=(\mathcal{O}-\mathcal{N}) Z+\mathcal{L C} \bar{X} \tag{24}
\end{align*}
$$

where $\mathcal{O}=-\mathcal{O}^{*}$ and where \mathcal{O}, \mathcal{L} and \mathcal{C} are TB and bounded on ℓ^{2}.

- Primary objectives:
- Time domain (\int actions)

$$
\begin{aligned}
& \dot{z}_{1}=\ell_{1}\left(v_{\mathrm{dc}}-v_{\mathrm{dc}}^{e}\right) \\
& \dot{z}_{2}=\ell_{2} i_{\mathrm{q}}
\end{aligned}
$$

- Harmonic domain

$$
\left[\begin{array}{l}
\dot{Z}_{1} \tag{25}\\
\dot{Z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\mathcal{N} & 0 \\
0 & -\mathcal{N}
\end{array}\right]\left[\begin{array}{l}
Z_{1} \\
Z_{2}
\end{array}\right]+\mathcal{L C}\left(X-X^{e}\right)
$$

$$
\begin{aligned}
& \text { with } \mathcal{L}=\operatorname{blkdiag}\left(\ell_{1} \mathcal{I}, \ell_{2} \mathcal{I}\right), \mathcal{C}=\left[\begin{array}{cc}
0 & \mathcal{I} \\
-\sqrt{\frac{2}{3}} \mathcal{S}_{3} & 0
\end{array}\right] \text { and } \\
& \mathcal{S}_{3}=\mathcal{T}\left(\left[\sin (\omega t) \sin \left(\omega t-\frac{2 \pi}{3}\right) \sin \left(\omega t+\frac{2 \pi}{3}\right)\right]\right)
\end{aligned}
$$

[^0]
Integral Actions

- Secondary objectives:

How to cancel the k-th phasor Y_{k} of a given output $y(t)=C(t) \times(t)$?
If $w(t)=e^{-\mathrm{J} \omega k t} y(t)$ then, for any $p, W_{p}=Y_{p+k}$. (k-shifted operator) Thus, $W_{0}=Y_{k}$

- Time domain (\int of $\left.w\right)$

$$
\dot{z}=\ell e^{-\jmath \omega k t} y(t)
$$

- Harmonic domain ($\equiv \int$ of Y_{k})

$$
\dot{Z}=-\mathcal{N} Z+\ell \mathcal{I}_{k} Y
$$

where \mathcal{I}_{k} denotes the k-shifted identity matrix.
In particular: $\dot{Z}_{0}=\ell Y_{k} \Rightarrow \int$ of Y_{k}
recalling that $\mathcal{N}=\operatorname{diag}(\jmath \omega p, p \in \mathbb{Z})$ and thus 0 -line of \mathcal{N} is 0 .
Applied to reject 2,4,5 and 7th order phasors on iabc (using higher-order Park's Transformation)

Control synthesis

Combining primary and secondary objectives into a single Z, a state feedback control is designed as follows:

- Consider the solution \mathcal{M} to the harmonic Sylvester equation given by:

$$
\begin{equation*}
(\mathcal{O}-\mathcal{N}) \mathcal{M}-\mathcal{M}\left(\mathcal{A}+\mathcal{A}\left(\mathcal{D}^{e}\right)-\mathcal{N}\right)+\mathcal{L C}=0 \tag{26}
\end{equation*}
$$

Theorem 10 (Forwarding control)

Using \mathcal{P} as provided by Theorem 9 and for any matrix functions $H_{i} \in L^{\infty}\left(\left[\begin{array}{ll}0 & T\end{array}\right)\right.$ $H_{i}=H_{i}^{\prime}>0, i=1,2$ such that $\mathrm{H}_{2} \mathrm{O}-\mathrm{OH}_{2}=0$, the state feedback control law given by:

$$
\begin{equation*}
D=D^{e}-\mathcal{H}_{1} \mathcal{G}^{*}(X)\left[\mathcal{P} \bar{X}-\mathcal{M}^{*} \mathcal{H}_{2}(Z-\mathcal{M} \bar{X})\right] \tag{27}
\end{equation*}
$$

where $\mathcal{H}_{i}=\mathcal{T}\left(H_{i}\right), i=1,2$ stabilizes globally and asymptotically the state X to X^{e}.
Tuning parameters: \mathcal{H}_{1} and \mathcal{H}_{2}.
Its T-periodic time-domain counterpart is directly deduced:

$$
\begin{equation*}
d=d^{e}-H_{1} G^{T}(x)\left[P\left(x-x^{e}\right)-M^{T} H_{2}\left(z-M\left(x-x^{e}\right)\right)\right] \tag{28}
\end{equation*}
$$

Stability is preserved when d is saturated! (not shown here)

Experimental results on a bench

(1) Control law is discretized with $f_{s}=20 \mathrm{kHz}$
(2) PLL is used to estimate electric angle and pulsation ω
(3) Signal quality is assessed by calculating:
(1) For AC signals, Total Harmonic Distorsion:

$$
T H D_{x}(t)=\left(\sum_{k=2}^{k=25} \frac{\left|X_{k}(t)\right|^{2}}{\left|X_{1}(t)\right|^{2}}\right)^{\frac{1}{2}}
$$

Figure: Test bench

Symbol	Quantities	Value	Unit
r	Phase resistance	1.15	Ω
L	Phase inductance	122	$\mu \mathrm{H}$
C	Bus Capacitance	100	${ }^{\prime} \mathrm{F}$
$R_{\text {L }}$	Load nominal resistance	120	Ω
f	AC frequency	50	Hz
ω	AC pulsation	314	$\mathrm{rad} / \mathrm{s}$
E	AC rms voltage	45	V
$v_{\text {dc, ref }}$	DC load nominal voltage	150	V
$i_{\text {dc, } \mathrm{n}}$	DC load nominal current	$\frac{v_{\mathrm{dc}, \mathrm{FEI}}}{R_{\mathrm{L}}}=1.25$	A
$i_{\text {sink }}$	Programmable current load	-	A
$i_{\text {dc }}$	DC load actual current	$i_{\text {sink }}+\frac{v_{\text {de }}}{R_{\text {de }}}$	A
$f_{\text {in, hm }}$	DC load harmonic content frequency	150	Hz

Table: Parameters Values

PI control with Notch filter

Startup $V_{\text {ref }}=150$ volts, (nominal values)

Figure: Transcient from diode rectifier mode to controlled mode: $v_{\mathrm{dc}}, i_{a}, T H D i_{a}, d_{a}$.

Load-side harmonic injection: $I_{d c}+\delta I_{d c}$ with $I_{d c}=1 \mathrm{~A}$ and $\delta I_{d c} \approx 4+1.5 \cos (3 \omega t+\phi) \mathrm{A}$

Figure: (a) Load current I_{dc}, (b) Phase current i_{a}

Load-side harmonic injection: $I_{d c}+\delta I_{d c}$ with $I_{d c}=1 \mathrm{~A}$ and $\delta I_{d c} \approx 4+1.5 \cos (3 \omega t+\phi) \mathrm{A}$

Figure: (a) Phase control d_{A}, (b) DC voltage V_{dc}

Load-side harmonic injection: $I_{d c}+\delta I_{d c}$ with $I_{d c}=1 \mathrm{~A}$ and $\delta I_{d c} \approx 4+1.5 \cos (3 \omega t+\phi) \mathrm{A}$

Figure: (a) Current i_{d}, (b) Current i_{q}

Optimal state feedback for LTP systems by solving TBLMIs

- Consider an unstable LTP system defined by

$$
\dot{x}=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right) x+\binom{b_{11}(t)}{0} u
$$

Figure: Components of A for $t \in[0 T]$

Figure: b_{11} for $t \in\left[\begin{array}{ll}0 & T\end{array}\right]$

- The spectrum of $\mathcal{A}-\mathcal{N}$ is given by $\sigma=\left\{\lambda_{i}+j 2 \pi k: k \in \mathbb{Z}, i=1,2\right\}$ with $\lambda_{1,2}=\{1 \pm \mathrm{j} 1.64\}$.
- Objective: Solve the Harmonic $L Q R$ problem: $\min U \int_{0}^{+\infty} X^{*} \mathcal{Q} X+U^{*} \mathcal{R} U d t$ with $\mathcal{Q}=\mathcal{T}\left(\operatorname{diag}\left(\left[\begin{array}{ll}10^{4}\end{array}\right]\right)\right.$ and $\mathcal{R}=\mathcal{T}\left(I d_{m}\right)$ and using TBLMIs.

For comparisons, 3 TBLMIs allowing to solve the LQR problem are considered:
(1) $L M I_{1}: \mathcal{K}:=\mathcal{R}^{-1} \mathcal{B}^{*} \mathcal{P}$

$$
\begin{align*}
& \max _{\mathcal{P}} \operatorname{tr}(\mathcal{P}), \tag{29}\\
& \mathcal{P}=\mathcal{P}^{*}>0, \quad\left(\begin{array}{cc}
(\mathcal{A}-\mathcal{N})^{*} \mathcal{P}+\mathcal{P}(\mathcal{A}-\mathcal{N})+\mathcal{Q} & \mathcal{P B} \\
\mathcal{B}^{*} \mathcal{P} & \mathcal{R}
\end{array}\right) \geq 0
\end{align*}
$$

(2) LMI $_{2}: \mathcal{K}:=\mathcal{Y S}^{-1}$

$$
\begin{align*}
& \min _{\mathcal{S}, \mathcal{Y}, \mathcal{W}} \operatorname{tr}(\mathcal{W}), \quad \mathcal{S}=\mathcal{S}^{*}>0 \tag{30}\\
& \left(\begin{array}{ccc}
(\mathcal{A}-\mathcal{N}) \mathcal{S}+\mathcal{S}(\mathcal{A}-\mathcal{N})^{*}+\mathcal{B} \mathcal{Y}+\mathcal{Y}^{*} \mathcal{B}^{*} & \star & \star \\
\mathcal{R}^{\frac{1}{2}} \mathcal{Y} & -\mathcal{I} & \star \\
\mathcal{Q}^{\frac{1}{2}} \mathcal{S} & 0 & -\mathcal{I}
\end{array}\right) \leq 0 \quad\left(\begin{array}{cc}
\mathcal{W} & \mathcal{I} \\
\mathcal{I} & \mathcal{S}
\end{array}\right) \geq 0
\end{align*}
$$

(3) $L M I H_{2}: \mathcal{K}:=\mathcal{Y S}^{-1}$

$$
\begin{align*}
& \min _{\mathcal{S}, \mathcal{Y}, \mathcal{Z}} \operatorname{tr}_{0} \mathcal{Z} \quad \mathcal{S}=\mathcal{S}^{*}>0 \\
& {\left[\begin{array}{cc}
\mathcal{Z} & \star \\
\mathcal{S C}_{z}^{*}+\mathcal{Y}^{*} \mathcal{D}_{z u}^{*} & \mathcal{S}
\end{array}\right] \geq 0 \quad \mathcal{C}_{z}:=\left[\mathcal{Q}^{\frac{1}{2}} ; 0\right], \mathcal{D}_{z u}:=\left[0 ; \mathcal{R}^{\frac{1}{2}}\right]} \tag{31}\\
& {\left[\begin{array}{l}
\left.(\mathcal{A}-\mathcal{N}) \mathcal{S}+\mathcal{S}(\mathcal{A}-\mathcal{N})^{*}+\mathcal{B Y}+\mathcal{Y}^{*} \mathcal{B}^{*}+\mathcal{I}\right] \leq 0
\end{array}\right.}
\end{align*}
$$

Moduli of Phasors $K=\left[K_{1}, K_{2}\right]$ using $L M I_{1}, L M I_{2}, L M I H_{2}$ with $p=q=r=30$

$K(t)$ over a period T for $L M I_{1}$.
$T_{\text {comp }}=1.5,9.5,41 s$ with $p=q=r$

$K(t)$ over a period T for $L M I H_{2}$. $T_{\text {comp }}=2.7,22,94 s$ with $q=r, p=\frac{r}{2}$

- Under the control $u(t)=u_{\text {ref }}(t)-K(t)\left(x(t)-x_{r e f}(t)\right)$, the LTP system is GES on any T-periodic trajectory $\left(x_{\text {ref }}, u_{\text {ref }}\right)=\mathcal{F}^{-1}\left(X_{\text {ref }}, U_{\text {ref }}\right)$ where $0=(\mathcal{A}-\mathcal{N}) X_{\text {ref }}+\mathcal{B} U_{\text {ref }}$ (harmonic equilibrium)

Conclusion

- A mathematically consistent framework for harmonic control design with dedicated tools
- Methodology: Design a control in the harmonic domain and derive its counterpart in the time domain.
- Advantages :
- Simplified design : Periodic systems are time invariant in harmonic domain
- Constant harmonic disturbance rejection is achieved by considering "integral actions" in harmonic domain
- Potentially useful for electrical engineering
- But one has to cope with the infinite dimension ...

More application details in

(1) Harmonic control of a three-phase rectifier bridge
"Harmonic control of three-phase AC/DC converter" submitted to [IEEE TCST] available at arxiv.org/pdf/2307.06680
(2) Harmonic $L Q R$ and Robust H_{∞} and H_{2} control design in
"On solving infinite-dimensional Toeplitz Block LMIs", [CDC 2023] available at arxiv.org/pdf/2303.08465
"A TBLMI Framework for Harmonic Robust Control" submitted to [IEEE TAC]. available at arxiv.org/pdf/2311.05934

Analysis: Spectral characterization, Floquet theory Assume $A \in L^{\infty}$ and $\Phi(T, 0)$ is non defective (Φ is the transition matrix):

Theorem 11 (Floquet factorization revisited)

(1) The spectrum of $(\mathcal{A}-\mathcal{N})$ is an unbounded, discrete set depending on a finite number of complex values $\lambda_{i}, i=1, \cdots, n$:

$$
\sigma:=\left\{\lambda_{i}+\mathrm{j} \omega k, k \in \mathbb{Z}, i=1, \cdots, n\right\} .
$$

(2) The following eigenvalue decomposition takes place:

$$
\begin{equation*}
(\mathcal{A}-\mathcal{N}) \mathcal{V}=\mathcal{V}(\Lambda \otimes \mathcal{I}-\mathcal{N}) \tag{32}
\end{equation*}
$$

with $\Lambda:=\operatorname{diag}\left(\lambda_{i}, i=1 \cdots, n\right)$ and where \mathcal{V} is a constant, invertible $T B$ and bounded operator on ℓ^{2}.
(3) Let $V:=\mathcal{T}^{-1}(\mathcal{V})$. V is an absolutely continuous, invertible and T-periodic matrix function and satisfies:

$$
\begin{equation*}
\dot{V}=A V-V \wedge \text { a.e. } \quad V(0):=\left[\phi_{1}, \cdots, \phi_{n}\right] \tag{33}
\end{equation*}
$$

where ϕ_{i} 's are the eigenvectors of $\Phi(T, 0)$ and $\lambda_{i}:=\frac{1}{T} \log \left(\mu_{i}\right)$ with μ_{i} 's the eigenvalues of $\Phi(T, 0)$.
(1) If $\dot{x}=A(t) \times\left(L T P\right.$ system) then $z:=V^{-1} \times$ satisfies $\dot{z}=\Lambda z$ (LTI system)
$\Phi(T, 0)$ is easy to compute!
Proofs: "Solving Infinite-Dimensional Harmonic Lyapunov and Riccati equations", [IEEE TAC 2023]

[^0]: ${ }^{1}$ [see the works of D. Astolfi, V. Andrieu, L. Praly, L. Marconi,...]

