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Context and motivations

o Fact: Electrical actuation chains are subject to undesirable harmonic disturbances
and/or non-linear resonance phenomena.

Out of control because of harmonics - an analysis of the harmonic
response of an inverter locomotive, E. Mollersted et al. IEEE
Control Systems Magazine, 2000.

Swiss locomotive stopped due to high harmonic currents:

o Instabilities caused by interactions between systems

o The modeling of the electrical chain was insufficient.

Harmonic control allows to:
@ Design stabilizing control for periodic systems

@ Take into account and cancel undesirable harmonic content



State of the art of harmonic modeling

Earlier and seminal papers (mainly developed in Electrical Engineering):
o General framework:
o Generalized State-Space Averaging (GSSA) [S. R. Sanders & al. (1991)]
o Dynamic Phasors (DP) [P. Mattavelli, G. C. Verghese & A. M. Stankovic (1997)]
o Linear Time Periodic (LTP) systems

o Sur les équations linéaires a coefficients périodiques [G. Floquet, (1883)].
o Extended Harmonic Domain (EHD) [M. Madrigal (2001)]

o Dynamic Harmonic Domain (DHD) [J. J. Chavez & A. Ramirez (2008)]
e Harmonic State Space (HSS) [N. M. Wereley (1990)]

In [Blin & al. (EJC 2020)], we show that all these harmonic modeling methods are
equivalent and are based essentially on the same tool:

a Sliding Fourier Decomposition (SFD) over a window of length T.



Sliding Fourier Decomposition over a window of length T

Tt

Signal x Phasors X = F(x)
More precisely:

F: L2 (R,C) - L2(R,F*(C))

loc

x> X

where the components of the time varying infinite sequence X = (-++, X_1, Xo, X1, )
are defined by:

1 t ; 2
Xi(t) == = f x(T)e 3 T dr (time varying Fourier coef.) with w := -
T Jt-T T
Xy is called k — th phasor (harmonic) of X.

If x = (x1,X2,+,%n) is a vector function then X := (F(x1),F(x2), -, F(xn))



How to determine a Harmonic Model ?

Consider a differential equation
x = f(t,x) (1)

Formally, its harmonic model is determined by:
X = F(f(t,x)) -NX ()

where N is a diagonal operator.

But there are important issues not addressed in the previous literature:

O How to reconstruct exactly x, if it exists, from X ? (inverse and functional space
invoked)

@ Under which conditions we have: (1) < (2) ? (bijection)

These questions are essential for analysis and synthesis purposes in the
harmonic domain.

For example, System (2) has trajectories that have no counterpart in (1).
Thus, if we design a harmonic control U, there is no guarantee that u = .7-"1(U) exists!



Outline

© Harmonic modeling - a mathematical framework

@ Analysis and Control design
@ Solving harmonic Lyapunov, Sylvester and Riccati equations
@ Solving harmonic Toeplitz Block LMIs (TBLMlIs)

© Applications

® Rejection of harmonic disturbances on a three-phase rectifier bridge (SAFRAN)
@ Optimal state feedback design for LTP systems by solving TBLMIs



Mathematical framework

Bijection between functional spaces
Theorem 1 (Coincidence Condition)

There exists a representative x € L2 _(R,C") of X, with X € L7> (R,¢*(C")), if and

I
only if, X is absolutely continuous and fulfills for any k € Z: o

Xi(t) = Xo(t)e K ae. (3)
X is said to belong to H c C*(R, £?(C"))
Reconstruction formula
Theorem 2 (punctual convergence)
If x € C;W (or ng with bounded variations), then the reconstruction formula is
provided by:
+o0 ) T.
x(t)= > Xp(t)e*Pi+ EXo(t), (4)

p=—o00

except at points of discontinuity of x for which left and right limits exist. In addition,
if x € CO, the equality (4) holds everywhere.

Proofs: " Necessary and sufficient conditions for harmonic control” [IEEE TAC 2022].



Harmonic systems

Consider nonlinear dynamical systems described by:

x=f(t,x), x(0):=xg (5)

Theorem 3

Under weak assumptions, x is a solution of the differential equation (5) in the
Carathéodory sense, if and only if, X = F(x) € H is a solution of:

X = F(f(t,x)) -NX, X(0):=F(x)(0) (6)

with N := Id, ® diag (jwk, k € Z). (Infinite dimensional system !)

Proofs: " Necessary and sufficient conditions for harmonic control” [IEEE TAC 2022].

Interest for analysis and control:

@ T—periodic systems becomes time invariant in harmonic domain
— All time invariant control design methods can be a priori applied

o A T-periodic trajectory corresponds to an equilibrium in the harmonic domain



How to determine F(f(t,x)) ?

o Define Toeplitz Block (TB) transformation 7 () of matrix function Anxm = (aj;)

Ain ... Aim
by: A=T(A) =] : :
A .. Apm
Figure: 2 x 2TB representation
j,0  dj,-1  dij,-2
with A; =T (a;):=| a1 aj0 a1 - |(o0x oo Toeplitz matrix)

3j2 @1 @0
where ajj i, k € Z refers to the phasors (Fourier coef.) of aj.

Property 1

e matrix-vector product: F (Ax) = T (A)F(x) = AX
o matrix-matrix product: T (AB) =T (A) T (B) = AB

Useful when f(t,x) defines a time-periodic polynomial systems !
Property 2

o AeL>([0 T]) if and only if A := T (A) is a constant and bounded on ¢* operator

[All2 = sup [AX] 2 = | Al
IXll2=1




Example : Harmonic model of LTP systems

Consider Ae L2([0 T]) and B e L**([0 T]) T-periodic matrices.
x is the unique solution associated with u € L,20C of the LTP system,

% = A(t)x(t) + B(t)u(t), x(0):=xo @)

if and only if X = F(x) € H is the unique solution associated with U := F(u) € H of
the LTI system

X=(A-N)X+BU, X(0):=F(x)(0) (8)
where A := T (A) and B:=T(B).

@ How to perform a stability analysis?
@ How to design a state feedback U := -KX 7



Harmonic Lyapunov, Sylvester and Riccati Equations

Theorem 4 (Harmonic Lyapunov equation)

Assume that A e L2([0 T],R™") is a T-periodic matrix function and let

Qe L>([0 T]) be a T-periodic symmetric and positive definite matrix function.
P is the unique T-periodic symmetric positive definite solution of the periodic
Lyapunov differential equation:

P(t) + A'(£)P(t) + P(t)A(t) + Q(t) =0, (9)

if and only if P =T (P) is the unique hermitian and positive definite solution of the
algebraic Lyapunov equation:

(A-N)Y"P+P(A-N)+Q=0, (10)

where Q := T(Q) is hermitian positive definite and A := T (A). Moreover, P is a
bounded operator on ¢2.

In practice, solving an infinite dimensional problem implies to solve a truncated
finite-dimensional one with a consistent scheme.



Solving Harmonic Lyapunov equation
Main idea : Take advantage of the Toeplitz structure of the infinite dimensional
problem and solve a finite-dimensional r-truncated version
Theorem 5 (Infinite dimensional solution)

Assume that A€ L= ([0 T],R™") and (A-N) is invertible.
The phasor P := F(P) associated with the solution P := T (P) of the
infinite-dimensional harmonic Lyapunov equation is given by:

col(P) = —(Idy ® (A= N)* + Idn 0 A*) L col(Q) (11)
ldy® A1 - Ildh ® A1y

where Id, o A := : : and Q := F(Q).
ldy® A1 -+ Idp ® Apn

Definition 6 ( r-truncation operator I1,)
o for a phasor vector X := F(x): M (X) = (X1,—r:r, Xo,~r:r =, Xn,—r:r)
o for nx m infinite-dimensional TB matrix A := T (A)

nr(A11) 50 nr(«_‘\lm)

Mn.(A):= n(2r+1) x m(2r+1)

ﬂr(Anl) ﬂr(~/.4nm)

ajo Ay
where I, (Aj) = : : (2r +1) x (2r + 1) principal submatrix of Aj;.

dij2r v 4ij,0

T i = = =



Solving Harmonic Lyapunov equation

o Define for any given r, the r—truncated solution P, to harmonic Lyapunov
equation as

col(B,) := —(ldy ® M, (A= N)* + Idp o T1,(A)*) Leol(M,(Q)) (12)
This is a linear problem of dimension n?(2r +1) !
Theorem 7 (Consistency)
For any given € > 0, there exists ry such that for any r > ry:
IP = Prilees = IP~Prleo <€

with P := T(P) and B, := T(P,).

@ Similar results for Harmonic Sylvester and Riccati equations as well as a Spectral
Characterization (Floquet Factorization revisited) can be found in
" Solving Infinite-Dimensional Harmonic Lyapunov and Riccati equations”, [I[EEE
TAC 2023] and in "Harmonic pole placement” [CDC 2022].



What about harmonic LMlIs ?

o How to solve the infinite dimensional harmonic Lyapunov inequality:
(A-NY"P+PA-N)+Q<0 (13)

and more generally a semidefinite optimization problem:

in T 14
pmin  Tro(P) (14)

L(P; As,s€S) <0,

where

@ Tro(P) = X7, Pii,o (average value of tr(P(t)) over a period T)

@ S is a finite set of subscripts,

@ A= T(A,) refers to the entries with A € L= ([0 T]) = A, bounded on £2.
Q P and L(P; As,s €S) are bounded on ¢?

1 1
Remark: tro(M*M)?2 is a norm that satisfies: [Mllp2 < tro(M*M)2 < V| M| 2



Main ideas

@ To approximate P, can we solve for a given r:

MN[(A-N)"P+P(A-N)+Q]<07? (15)

Two main difficulties:
O Difficulty 1: How to determine I1,(AB) ?

Product of finite dimensional Toeplitz matrices is not Toeplitz

= +

M (A, (B) = 1, (AB) + E(A, B)
@ Explicit expression of E(A, BB) is known (implies Hankel Bloc matrices defined from A, B).
@ E(A,B) can be exactly computed only if A or 3 are banded TB.
Solution: Band and Truncate (possible since Ay — 0, |k| - +o0)

@ Difficulty 2: If all TB matrices in (15) are now replaced by banded TB matrices, how
does the solution obtained compare with the original solutions?
@ Non-uniqueness of the solution complicates the problem
Solution: Convex optimization problems have generally an unique solution



Solving TBLMI

o Define Ay(,) the p-banded version of A obtained by deleting all its phasors of
order higher than p

o Define the finite dimensional problem:
For given p, q, r, solve

in Tp(P), MM, (P)>0 16
Anin, Tro(P) (P) (16)
N [L(P; As,,),5€S)] <0, Pjx=0, [k|>q
This is a w(Zq + 1) dimensional problem if P is nx n TB.

Theorem 8 (Consistency)

Assume Problem (14) has a unique solution P bounded on £2. For any e > 0, there
exist p, q and ry such that for any r > ry, the solution Pp q.r to (16) satisfies:

H"Sp,qyr - "3||L°° = Hﬁp,q,r —75He2 <e. (17)

with P := T(P) and Ppg.r := T(Pp,q.r).

Proofs: " On solving infinite-dimensional Toeplitz Block LMIs" [CDC 2023].



Case study: Harmonic control of three-phase rectifier bridge (Safran)

)

Figure: Grid tied AC/DC converter with load
represented as current source

Assume state x is measured.

Bilinear system equations (in balanced
mode and abc frame representation):

x=Ax+ G(x)d+Bv (18)

o State: x = (iabe, Vde ),
e Control: d = d,p. (duty cycle)

@ Input: v = (eabe; fdc),

with
C33
_ry =2 vq
=7 |
A [ 0 o]’ €9 [Idbc’ ]
C
P 2 _1 _1
3 0 3 2 3
B:[é ,;] C33:[*§ 5 3
C _1 _1 2
3 3 3



Control objectives

© Primary objectives: under T-periodic load or grid perturbation:

e Maintain the DC bus voltage mean value at a given reference Ve ef »
o Maximize power factor: i; mean value must be maintained to 0.

@ Secondary objectives: Reduce Total Harmonic Distortion (THD) on iy to avoid
AC grid pollution

Retained scenario: Reject (2, 4, 5, 7)-th harmonics on iyp due to 3-rd and 6-th
harmonic perturbations on ig. (load perturbations)

iy cos(wt) cos(wt — 2%) cos(wt + QT—‘)
Park’s transformation: quo = iq = \/g —sin(wt) —sin(wt - T‘") —sin(wt + 237f iabe

i V2 V2 V2

0 2 2 2

where w is the pulsation of the source grid voltage



Harmonic model of the AC/DC Converter

@ Associated harmonic model is an infinite dimensional bilinear system given by:

X=(A-N)X+G(X)D+BV (19)
with
X = (la, Ip, Ic, Vac) = F(x)
D= (DaszzDC) =‘7:(dabc)
V= (Ea, Ep, Ec, Idc) = f(eabc«, i(i(:)
and where

"o 0 LEL-2 A C8Vae
A::[ LO 0], B::|:(L) _%, G(X):= Iagc*

with Ve = T(Vac), Zabe = T (fabe)-



Harmonic stabilizing control

o Consider an equilibrium (X, D¢, V¢) given by:
0=(A-N)X®+G(X®)D*+BV® (20)

@ The dynamic of the error X = X — X¢ satisfies:

X = (A+A(D?) - N)X +G(X)D (21)
_ 0 (G30T)D°
where D = D — D and A(D®) = | pes (L) with D¢ = T(D*).
C

Theorem 9 (Stabilizing control)
Assume (A + A(D¢) - N) is Hurwitz. Consider P solution to the Lyapunov equation:
(A+ A(D®) -N)"P+P(A+AD°)-N)+Q=0 (22)

with Q=T (Q) and Q € L([0 T]),Q=Q' >0.
For any Hy € L>°([0 T1]), H1 = H{ >0, the state feedback control law given by:

D =D -H:1G" (X)P(X - X°) (23)

where Hi = T (H1), stabilizes globally and asymptotically the state X to X¢.

Tuning parameter: H;




Integral actions

@ Improve the design by forwarding control 1
X = (A+ A(D®) - N)X + G(X)D
Z=(0-N)Z+LCX (24)

where @ = —~O* and where O, £ and C are TB and bounded on ¢2.

o Primary objectives:
o Time domain ( actions)

21 =41 (Vac — vqe)

2y = Lo
e Harmonic domain .
Zi| _[-N 0 1[4 e
AR ARt

0 z
with £ = blkdiag(41Z, €,Z),C = [—\/283 0] and

Sz = T ([sin(wt) sin(wt - ZF) sin(wt + 2F)]).

1[see the works of D. Astolfi, V. Andrieu, L. Praly, L. Marconi,...]



Integral Actions

@ Secondary objectives:
How to cancel the k-th phasor Y) of a given output y(t) = C(t)x(t) ?

If w(t) = e “kty(t) then, for any p, W, = Y,k (k-shifted operator)
Thus, Wp = Yy

o Time domain (f of w)
7= 07"y (1)
e Harmonic domain (= [ of Yj)
Z=-NZ+UTY
where Z; denotes the k—shifted identity matrix.

In particular: Zy = £Y) = [ of Y
recalling that A = diag(Jwp, p € Z) and thus 0-line of N is 0.

Applied to reject 2,4,5 and 7th order phasors on i (using higher-order Park’s
Transformation)



Control synthesis

Combining primary and secondary objectives into a single Z, a state feedback control
is designed as follows:

o Consider the solution M to the harmonic Sylvester equation given by:

(O -NYM - M(A+A(D®) -~ N)+LC =0 (26)

Theorem 10 (Forwarding control)

Using P as provided by Theorem 9 and for any matrix functions H; € L*° ([0 T])
Hj=H!>0,i=1,2 such that H;O — OH, = 0, the state feedback control law given by:

D = D° - H1G* (X)[PX - M*Ha(Z - MX)] (27)

where H; = T (H;), i = 1,2 stabilizes globally and asymptotically the state X to X¢.

Tuning parameters: H1 and Ho;.
Its T-periodic time-domain counterpart is directly deduced:

d=d®-HGT(x)[P(x-x°) = MT Hy(z - M(x-x%))] (28)

Stability is preserved when d is saturated ! (not shown here)



Experimental results on a bench

@ Control law is discretized with f; = 20kHz

@ PLL is used to estimate electric angle and
pulsation w

© Signal quality is assessed by calculating:
@ For AC signals, Total Harmonic Distorsion:

1
= 2\ 2
THDx(t) = (kfs M) ’

= Xa(n)?

AC source
AC Probe

Phase Inductance

HLab Box (dSpace)

DC load

Figure: Test bench

Symbol Quantities Value Unit

i i . r Phase resistan 115 Q

@ For DC signals, Harmonic content: a Phase resstance LD o

4 Bus Capacitance 100 WF

l Ry Load nominal resistance 120 Q

e k=25 X > 2 F AC frequency 50 Hz

t) = t AC pul 314 /s

(D) =] 2 Xl : gt S

k=1 Vacrot BC load nominal voltage 150 v

. .. Tdem DC load nominal current "‘R"" =125 A

@ For comparison, two additional controllers are Pregmlecuret 3 ——
, X . & oad actaal current T

considered: Pl and Pl with a notch filter to rum | DT Toad Rarmoric content frequeney | 150 iz

attenuate unwanted harmonic behavior.

eaq + LRwisg

Pl control with Notch filter

Table: Parameters Values




Startup Vjer = 150 volts, (nominal values)

016 018 02 022 024 026 028 03 032 034
)

0.16 018 02 022 024 026 028 03 032 034
time (5)

Figure: Transcient from diode rectifier mode to controlled mode: vq., i, THDI,, d,.



Load-side harmonic injection: lyc + 6lgc with lge = 1A and 6/gc # 4 + 1.5cos(3wt + ¢) A

o focsink 20
0
o
S0F L ' L '
05 02 025 03 035 04
10 THD |
015 02 025 ) 035 04 g -
- Harmonic Gontont Iy, N
2 S
10 o2l . . I = =
015 02 025 05 035 04
2L Phasors
0 .
015 02 025 ) 035 04 _a
o Phasors g3
2
2

0
03~ o
— 05
002~ PiNoth
2 — Hamonie| "~
Toi- & ——— Hamonic
ol .
02 o 02 04

25 03 035 04 o015
time (5) time (5)

(2) (b)

Figure: (a) Load current I, (b) Phase current i,

DA




Load-side harmonic injection: lyc + 6lgc with lge = 1A and 6/gc # 4 + 1.5cos(3wt + ¢) A

%
1
13
06
04
33
o
015 02 035 04
THDd,

10!

102 i - |

025 03 035 04

e

015 02 025 03 035 04
Harmonic Content V,,
04
Phasors

R

02 025 03 035

z

5
time (5)

(@)

5
time (5)

(b)

Figure: (a) Phase control da, (b) DC voltage V.




Load-side

harmonic injection: lyc + dlygc with lge = 1A and &lgc # 4+ 1.5cos(3wt + ) A

'

015 02 025 03 035 o 02 025 03 035 04
Harmonic Content I, Harmonic Content |,
107
10° ey
~_
Sy \‘\“\‘
102 —— —_——in
ey i L

015 02 025 03

—n o

PiNoen | o | =4
—— Homono| 2 = 1 Noth
S e e L Hamorke [
il o . L L
015 02 0. 03 035 04 015 02 025 03 035 04
time (s)

time (s)

(a) (b)

Figure: (a) Current iy, (b) Current ig




Optimal state feedback for LTP systems by solving TBLMIs

o Consider an unstable LTP system defined by

=( 811(1’.‘) 312(t) )X+( bll(t) )u
agl(t) 322(1:) 0

L

Figure: Components of A for t € [0 T] Figure: by fort € [0 T]

o The spectrum of A— N is given by o = {\; + j2rk: ke Z,i=1,2} with
)\1,2 = {1 ij1.64}.

o Objective: Solve the Harmonic LQR problem: miny [, X* QX + U*R Udt
with Q = T (diag([1 10*])) and R = T (Idm) and using TBLMIs.



For comparisons, 3 TBLMIs allowing to solve the LQR problem are considered:
O LMh: K:=R'B*P
max tro(P), (29)

- (A-NY*P+P(A-N)+Q PB
P=P >0, ( B*P = |20

@ LMb: K:=YS™!

‘S’rrll)i,nwtrg(\/\/)7 S=8">0 (30)
(A-N)S+S(A-N)*"+BY+Y*B* « * w1
1
R2Y T« |<o0 ( Y % )20
Q28 0o -z

Q LMl Hy: K:=YS™!

min thZ S=8">0
S\V,Z

Z * 1 1
[ scr+Yy*Di, S ]20 €z 1= [Q2:0], Doy 1= [0 R 2] (31)

[ (A-N)S+S(A-N)*"+BY+Y*B*+I ]<0



Modulus of phasors K

Modulus of phasors Ky

s 2 8 8
i — M — i,
— i, 70 — i,
5
Hy Ha
&
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2
p g
20 B4
SAEIE: ¥
' S || a (1]l e
(i 10 Bifliexkis
a1
o [
60 40 o %0 Cl 0 40 20 o 20 40 C

Moduli of Phasors K = [K1, K] using LMh,LMb, LMI H, with p=gq =r =30
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K(t) over a period T for LMh.
Teomp =1.5,9.5,41s with p=qg=r

()

()

K(t) over a period T for LMI H,.
Teomp =2.7, 22, 94s with g=r, p= 3



o Under the control u(t) = uper(t) — K(t)(x(t) — Xrer (t)), the LTP system is GES
on any T —periodic trajectory (Xeef, Uref) = F +(Xref, Urer) where
0= (A-N)Xef + BU,er (harmonic equilibrium)

21 (L)
— W
r—20
r—30
I x  ref
1
e
o E B B P s &
2o (t
oz 2(2)
° )
oz L ——— =10
———r=20
r—30
—o.a )
— x_ref
o6
o 1 2 3 “ s s
w(t
o )
A A
10 HY \
| - \
o y
10 ——— =10
———r—20
20
r—30
-30 |- — uref
a0 |




Conclusion

A mathematically consistent framework for harmonic control design with
dedicated tools

o Methodology: Design a control in the harmonic domain and derive its counterpart
in the time domain.

Advantages :

o Simplified design : Periodic systems are time invariant in harmonic domain

o Constant harmonic disturbance rejection is achieved by considering "integral actions” in
harmonic domain

o Potentially useful for electrical engineering

o But one has to cope with the infinite dimension ...



More application details in

© Harmonic control of a three-phase rectifier bridge

"Harmonic control of three-phase AC/DC converter” submitted to [IEEE TCST]
available at arxiv.org/pdf/2307.06680

@ Harmonic LQR and Robust He, and H, control design in

" On solving infinite-dimensional Toeplitz Block LMIs”, [CDC 2023]
available at arxiv.org/pdf/2303.08465

" A TBLMI Framework for Harmonic Robust Control” submitted to [IEEE TAC].
available at arxiv.org/pdf/2311.05934



Analysis: Spectral characterization, Floquet theory
Assume A € L* and ®(T,0) is non defective (® is the transition matrix):
Theorem 11 (Floquet factorization revisited)

@ The spectrum of (A —N') is an unbounded, discrete set depending on a finite
number of complex values \;, i =1,--,n :

o:={\ +jwk,keZ,i=1,-,n}.
@ The following eigenvalue decomposition takes place:
(A-NMV=V(AQZI-N) (32)

with N\ := diag(\;,i = 1---,n) and where V is a constant, invertible TB and
bounded operator on £<.

© Let V=T 1(V). V is an absolutely continuous, invertible and T—periodic
matrix function and satisfies:

V=AV - VA ae. V(0) = [¢1,, bn] (33)

where ¢;’s are the eigenvectors of ®(T,0) and \; := % log(w;) with u;'s the
eigenvalues of ®(T,0).

Q Ifx = A(t)x (LTP system) then z := V~'x satisfies z = Nz (LTI system)

®(T,0) is easy to compute !
Proofs: "Solving Infinite-Dimensional Harmonic Lyapunov and Riccati equations”,
[IEEE TAC 2023]



