Output Regulation for a class of linear ODE-Hyperbolic PDE-ODE systems

Jean Auriol
Joint work with J. Redaud and F. Bribiesca-Argomedo

L2S, CNRS, Université Paris-Saclay, UMR 8506

November 8, 2023

Laboratoire Signaux \&
Systèmes

Motivation

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
- Evolution (e.g., transport) of conserved quantities in space and time
- Finite speed of propagation (vs. heat equation)

Motivation

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
- Evolution (e.g., transport) of conserved quantities in space and time
- Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
- long distances (e.g. pipeline)
- slow propagation speeds (e.g. traffic)
- spatially dependent characteristics (e.g. composite materials)
- anisotropic behavior (e.g. ferromagnetism)

Motivation

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
- Evolution (e.g., transport) of conserved quantities in space and time
- Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
- long distances (e.g. pipeline)
- slow propagation speeds (e.g. traffic)
- spatially dependent characteristics (e.g. composite materials)
- anisotropic behavior (e.g. ferromagnetism)
- Multiple problems: stabilization, control, observability, parameter estimation...
- Wave equation: $\partial_{t t} w(t, x)-c^{2} \partial_{x x} w(t, x)=0$.

Motivation

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
- Evolution (e.g., transport) of conserved quantities in space and time
- Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
- long distances (e.g. pipeline)
- slow propagation speeds (e.g. traffic)
- spatially dependent characteristics (e.g. composite materials)
- anisotropic behavior (e.g. ferromagnetism)
- Multiple problems: stabilization, control, observability, parameter estimation...
- Wave equation: $\partial_{t t} w(t, x)-c^{2} \partial_{x x} w(t, x)=0$.

Mathematically, this may look something like:

$$
\partial_{t} \rho(t, x)=\nabla f(t, x)+S(t, x), \quad \forall(t, x) \in[0, T] \times \Omega
$$

where ρ is the quantity conserved, f is a flux density and S is a source term.

Motivation

Many physical laws are conservation/balance laws, e.g. mass, charge, energy, momentum [Bastin, Coron; 2016]

Networks of hyperbolic systems

Why coupled and interconnected hyperbolic systems?

- Conservation/balance laws rarely appear isolated
- Navier-Stokes \rightarrow mass + energy + momentum
- Propagation phenomena rarely occur in a single direction
- Systems modeled by hyperbolic PDEs do not exist in isolation, e.g.:
- Electric transmission networks \rightarrow interconnection of individual transmission lines
- Mechanical vibrations in drilling devices \rightarrow interconnection of different pipes
- Possible coupling with ODEs
- actuator dynamics (e.g. pump, converter)
- load dynamics (e.g. valve, motor)
- sensor dynamics (e.g. flow-rate sensor, tachometer)

Examples of interconnected ODE-PDEs-ODE systems

Applications: drilling systems, deepwater construction vessels [Wang et al.]

Interconnected PDE-ODE systems

- Interconnections of hyperbolic PDEs and ODEs are not a new problem.
- Many constructive control results based on the backstepping approach, e.g.:
- Seminal paper [Krstic and Smyshlyaev, 2008]: re-interpretation of the classical Finite Spectrum Assignment [Manitius and Olbrot, 1979] (ODE + input delays)
- Time-varying delays [Bekiaris-Liberis and Krstic, 2013, Bresch-Pietri, 2012],
- Cascades of PDEs [Auriol et al., 2019]
- Cascaded interconnections of hyperbolic PDE-ODE systems: [Aamo, 2012, Hasan et al., 2016, Zhou and Tang, 2012]

Interconnected PDE-ODE systems

- Interconnections of hyperbolic PDEs and ODEs are not a new problem.
- Many constructive control results based on the backstepping approach, e.g.:
- Seminal paper [Krstic and Smyshlyaev, 2008]: re-interpretation of the classical Finite Spectrum Assignment [Manitius and Olbrot, 1979] (ODE + input delays)
- Time-varying delays [Bekiaris-Liberis and Krstic, 2013, Bresch-Pietri, 2012],
- Cascades of PDEs [Auriol et al., 2019]
- Cascaded interconnections of hyperbolic PDE-ODE systems: [Aamo, 2012, Hasan et al., 2016, Zhou and Tang, 2012]
- For fully-interconnected (non-cascaded) systems some examples include:
- stabilizing state-feedback control law in [Di Meglio et al., 2018, Wang et al., 2018]
- output regulation for coupled linear wave-ODE systems [Deutscher and Gabriel, 2021]

Interconnected PDE-ODE systems: control design

- For ODE-hyperbolic PDE-ODE systems with full interconnections (non-cascade):
- state feedback in [Bou Saba et al., 2017] for scalar PDE system (inverible input matrix)
- output-feedback controller based on a Byrnes-Isidori normal form for the proximal ODE, as well as a relative degree one condition in [Deutscher et al., 2018]
- strictly-proper state-feedback control law for scalar PDE in [Bou Saba et al., 2019] requiring minimum-phase assumption (not relative degree 1)
- extended to output-feedback control for scalar PDE in [Wang and Krstic, 2020]
- stabilizing observer-controller robust to delays in the case of a scalar proximal ODE in [Di Meglio et al., 2020]
- Some recent results have also been obtained for interconnected PDE systems with non-linear ODEs [lrscheid et al., 2021]

Content of the presentation

What you will see in this presentation

- Output regulation of a general class of ODE-PDE-ODE system
- Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
- Backstepping approach: integral change of coordinates
- Time delay representation and frequency analysis
- Stabilizing control law in the absence of the disturbance

Content of the presentation

What you will see in this presentation

- Output regulation of a general class of ODE-PDE-ODE system
- Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
- Backstepping approach: integral change of coordinates
- Time delay representation and frequency analysis
- Stabilizing control law in the absence of the disturbance
- A robustification procedure
- Low-pass filter to make the control law strictly proper
- Frequency analysis

Content of the presentation

What you will see in this presentation

- Output regulation of a general class of ODE-PDE-ODE system
- Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
- Backstepping approach: integral change of coordinates
- Time delay representation and frequency analysis
- Stabilizing control law in the absence of the disturbance
- A robustification procedure
- Low-pass filter to make the control law strictly proper
- Frequency analysis
- Observer design
- Backstepping approach to simplify the dynamics
- Luenberger-like observer with tuning operators
- Frequency analysis
- Output-feedback control law

System under consideration: ODE-PDE-ODE

- Measurement: $y(t)=C_{\text {mes }} Y(t)$
- Same concepts for scalar and non-scalar PDEs systems

System under consideration: ODE-PDE-ODE

- Measurement: $y(t)=C_{\text {mes }} Y(t)$
- Same concepts for scalar and non-scalar PDEs systems
- Diagonal terms can be removed with exp. change of coordinates

System under consideration: ODE-PDE-ODE

- Measurement: $y(t)=C_{\text {mes }} Y(t)$
- Same concepts for scalar and non-scalar PDEs systems
- Diagonal terms can be removed with exp. change of coordinates
- Initial conditions in H^{1} with appropriate compatibility conditions \rightarrow well-posedness

System under consideration: ODE-PDE-ODE

- Measurement: $y(t)=C_{\text {mes }} Y(t)$
- Same concepts for scalar and non-scalar PDEs systems
- Diagonal terms can be removed with exp. change of coordinates
- Initial conditions in H^{1} with appropriate compatibility conditions \rightarrow well-posedness
- Stabilization in the sense of the L^{2}-norm

System under consideration: well-posedness and stabilization objective

$$
\left\{\begin{array}{l}
\dot{X}(t)=A_{0} X(t)+E_{0} v(t, 0)+B_{X} U(t), \\
\partial_{t} u(t, x)+\lambda \partial_{x} u(t, x)=\sigma^{+-}(x) u(t, x), \\
\partial_{t} v(t, x)-\mu \partial_{x} v(t, x)=\sigma^{-+}(x) u(t, x), \\
u(t, 0)=C_{0} X(t)+q v(t, 0), \quad v(t, 1)=\rho u(t, 1)+C_{1} Y(t), \\
\dot{Y}(t)=A_{1} Y(t)+E_{1} u(t, 1),
\end{array}\right.
$$

Well-posedness in open-loop

For every initial condition $\left(X_{0}, u_{0}, v_{0}, Y_{0}\right) \in \mathbb{R}^{p} \times H^{1}\left([0,1], \mathbb{R}^{2}\right) \times \mathbb{R}^{q}$ that verifies the compatibility conditions

$$
u_{0}(0)=C_{0} X(t)+Q v_{0}(0), \quad v_{0}(1)=R u_{0}(1)+C_{1} Y(t)
$$

there exists one and one only (X, u, v, Y) which is a solution to the open-loop Cauchy problem (i.e., $U \equiv 0$).
Moreover, there exists $\kappa_{0}>0$ such that for every $\left(X_{0}, u_{0}, v_{0}, Y_{0}\right) \in \mathbb{R}^{p} \times H^{1}\left([0,1], \mathbb{R}^{2}\right) \times \mathbb{R}^{q}$ satisfying the compatibility conditions, the unique solution verifies

$$
\|(X(t), u(t, \cdot), v(t, \cdot), Y(t))\|_{\chi} \leq \kappa_{0} \mathrm{e}^{\kappa_{0} t}\left\|\left(X_{0}, u_{0}, v_{0}, Y_{0}\right)\right\|_{\chi}, \quad \forall t \in[0, \infty)
$$

where $\|(X(t), u(t, \cdot), v(t, \cdot), Y(t))\|_{\chi}=\sqrt{\|X(t)\|_{\mathbb{R}^{p}}^{2}+\|u(t, \cdot)\|_{L^{2}}^{2}+\|v(t, \cdot)\|_{L^{2}}^{2}+\|Y(t)\|_{\mathbb{R}^{q}}^{2}}$.

System under consideration: well-posedness and stabilization objective

$$
\left\{\begin{array}{l}
\dot{X}(t)=A_{0} X(t)+E_{0} v(t, 0)+B_{X} U(t), \\
\partial_{t} u(t, x)+\lambda \partial_{x} u(t, x)=\sigma^{+-}(x) u(t, x), \\
\partial_{t} v(t, x)-\mu \partial_{x} v(t, x)=\sigma^{-+}(x) u(t, x), \\
u(t, 0)=C_{0} X(t)+q v(t, 0), \quad v(t, 1)=\rho u(t, 1)+C_{1} Y(t), \\
\dot{Y}(t)=A_{1} Y(t)+E_{1} u(t, 1),
\end{array}\right.
$$

Stabilization objective

Design a continuous control input that exponentially stabilizes the system in the sense of the L^{2}-norm, i.e. there exist κ_{0} and $v>0$ such that for any initial condition $\left(X_{0}, u_{0}, v_{0}, Y_{0}\right) \in \mathbb{R}^{p} \times H^{1}\left([0,1], \mathbb{R}^{2}\right) \times \mathbb{R}^{q}$, we have

$$
\|(X(t), u(t, \cdot), v(t, \cdot), Y(t))\|_{\chi} \leq \kappa_{0} \mathrm{e}^{-v t}\left\|\left(X_{0}, u_{0}, v_{0}, Y_{0}\right)\right\|_{\chi}, 0 \leq t
$$

Output-regulation problem

Augmented variable: $\quad Y(t)=\left(Y_{1}^{\top}(t), Y_{2}^{\top}(t)\right)^{\top}$

- Y_{1} is the "real" ODE state
- Y_{2} is an exogenous input: disturbance $Y_{\text {dist }}$ and/or a reference trajectory $Y_{\text {ref }}$

$$
\dot{Y}(t)=A_{1} Y(t)+\binom{E_{1}}{0_{q_{2} \times 1}} u(t, 1), \text { with } A_{1}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0_{q_{2} \times q_{1}} & A_{22}
\end{array}\right)
$$

Output-regulation problem

Augmented variable: $\quad Y(t)=\left(Y_{1}^{\top}(t), Y_{2}^{\top}(t)\right)^{\top}$

- Y_{1} is the "real" ODE state
- Y_{2} is an exogenous input: disturbance $Y_{\text {dist }}$ and/or a reference trajectory $Y_{\text {ref }}$

$$
\dot{Y}(t)=A_{1} Y(t)+\binom{E_{1}}{0_{q_{2} \times 1}} u(t, 1) \text {, with } A_{1}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0_{q_{2} \times q_{1}} & A_{22}
\end{array}\right) \text {, }
$$

Virtual output: $\quad \varepsilon(t)=C_{e} Y(t)=\left(\begin{array}{ll}C_{e 1} & C_{e 2}\end{array}\right) Y(t)$

Control objective

Design a control law $U(t)$ s.t. the virtual output $\varepsilon(t)$ exp. converges to zero.

Output-regulation problem

Augmented variable: $\quad Y(t)=\left(Y_{1}^{\top}(t), Y_{2}^{\top}(t)\right)^{\top}$

- Y_{1} is the "real" ODE state
- Y_{2} is an exogenous input: disturbance $Y_{\text {dist }}$ and/or a reference trajectory $Y_{\text {ref }}$

$$
\dot{Y}(t)=A_{1} Y(t)+\binom{E_{1}}{0_{q_{2} \times 1}} u(t, 1), \text { with } A_{1}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0_{q_{2} \times q_{1}} & A_{22}
\end{array}\right)
$$

Virtual output: $\quad \varepsilon(t)=C_{e} Y(t)=\left(\begin{array}{ll}C_{e 1} & C_{e 2}\end{array}\right) Y(t)$

- Output regulation problem: $C_{e 1} \not \equiv 0$, and $C_{e 2} \equiv 0$: we want to regulate to zero a linear combination of components of $Y_{1}(t)$ in the presence of a disturbance $Y_{2}(t)$.

Output-regulation problem

Augmented variable: $\quad Y(t)=\left(Y_{1}^{\top}(t), Y_{2}^{\top}(t)\right)^{\top}$

- Y_{1} is the "real" ODE state
- Y_{2} is an exogenous input: disturbance $Y_{\text {dist }}$ and/or a reference trajectory $Y_{\text {ref }}$

$$
\dot{Y}(t)=A_{1} Y(t)+\binom{E_{1}}{0_{q_{2} \times 1}} u(t, 1), \text { with } A_{1}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0_{q_{2} \times q_{1}} & A_{22}
\end{array}\right)
$$

Virtual output: $\quad \varepsilon(t)=C_{e} Y(t)=\left(\begin{array}{ll}C_{e 1} & C_{e 2}\end{array}\right) Y(t)$

- Output tracking problem: $C_{e 1, i}-C_{e 2, j}=0$, (other components $=0$): we want the $i^{\text {th }}$ component of the output Y_{1} to converge towards the $j^{\text {th }}$ component of a known trajectory Y_{2}.

Structural assumptions

Assumption 1: Stabilizability

The pairs $\left(A_{0}, B_{0}\right)$ and $\left(A_{11}, E_{1}\right)$ are stabilizable, i.e. there exist $F_{0} \in \mathbb{R}^{r \times p}, F_{1} \in \mathbb{R}^{n \times q_{1}}$ such that $\bar{A}_{0} \doteq A_{0}+B_{X} F_{0}$ and $\bar{A}_{11} \doteq A_{11}+E_{1} F_{1}$ are Hurwitz.

- Classical requirement found in most of the papers dealing with ODE-PDE-ODE
- Not overly conservative (necessary to stabilize Y, slightly conservative for X).

Structural assumptions

Assumption 2

For all $s \in \mathbb{C}_{0}$, the matrices $\left(A_{0}, B_{X}, C_{0}\right)$ satisfy

$$
\operatorname{rank}\left(\begin{array}{cc}
\operatorname{sld}-A_{0} & B_{X} \\
C_{0} & 0_{n \times r}
\end{array}\right)=p+1=p+n .
$$

- The function $P_{0}(s)=C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} B_{X}$ does not have any zeros in \mathbb{C}^{+}
- Stable right inverse of $P_{0}(s)$

Structural assumptions

Assumption 3: Delay-robustness

The coefficients ρ and q verifiy $|\rho q|<1$.

- No asymptotic chain of eigenvalues with non-negative real parts
- Necessary for (delay-) robust stabilization

Structural assumptions

Assumption 4: detectability

The pairs $\left(A_{1}, C\right),\left(A_{0}, C_{0}\right)$ are detectable (i.e. there exist $L_{0} \in \mathbb{R}^{p \times n}$ and $L_{1} \in \mathbb{R}^{q \times d}$ such that $\tilde{A}_{1} \doteq A_{1}+L_{1} C_{\text {mes }}$ and $\tilde{A}_{0} \doteq A_{0}+L_{0} C_{0}$ are Hurwitz).

- Classical requirement found in most of the papers dealing with ODE-PDE-ODE
- Not overly conservative (necessary for reconstruction of X_{0}, slightly conservative for Y).

Structural assumptions

Assumption 5

For all $s \in \mathbb{C}^{+}$, the matrices $\left(A_{1}, E_{1}, C\right)$ satisfy

$$
\operatorname{rank}\left(\left(\begin{array}{cc}
\text { sld }-A_{1} & E_{1} \tag{1}\\
C_{\text {mes }} & 0
\end{array}\right)\right)=q+1=q+n .
$$

- Necessary to independently reconstruct the different PDE boundary values by inverting the Y dynamics.
- The function $P_{1}(s) \doteq C_{m e s}\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1}$ does not have any zeros in \mathbb{C}^{+}
- Stable left-inverse of $P_{1}(s)$

Structural assumptions

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_{a} \in \mathbb{R}^{q_{1} \times q_{2}}, F_{a} \in \mathbb{R}^{n \times q_{2}}$ solutions to the regulator equations:

$$
\left\{\begin{array}{l}
-A_{11} T_{a}+T_{a} A_{22}+A_{12}=-E_{1} F_{a}, \\
-C_{e 1} T_{a}+C_{e 2}=0 .
\end{array}\right.
$$

- Non-resonance condition.
- A_{11} and A_{22} have disjoint spectra, and the number of outputs we regulate is coherent with the number of inputs.
- The matrices T_{a}, F_{a} can be computed using a Schur triangulation.

Control design: strategy.

- Backstepping transformation to simplify the dynamics and the design of the control law.
- The regulation problem rewrites as a stabilization problem.
- Time-delay representation and frequency analysis.
- Low-pass filtering of the control law to make it strictly proper.

Backstepping methodology

- Map the original system to a target system for which the stability analysis is easier.
- Variable change: integral transformation, classically Volterra transform of the second kind

$$
\begin{aligned}
& \alpha(t, x)=u(t, x)-\int_{0}^{x} K^{u u}(x, \xi) u(t, \xi)+K^{u v}(x, \xi) v(t, \xi) d \xi \\
& \beta(t, x)=v(t, x)-\int_{0}^{x} K^{v u}(x, \xi) u(t, \xi)+K^{v v}(x, \xi) v(t, \xi) d \xi
\end{aligned}
$$

Condensed form: $\quad \gamma(t, x)=w(t, x)-\int_{0}^{x} K(x, y) w(t, y) d y$.

Limitations

- Choice of an adequate target system.
- Proof of existence and invertibility of an adequate backstepping transform.

Objective: Move the in-domain coupling terms at the actuated boundary.

$$
\begin{aligned}
u_{t}(t, x)+\lambda u_{x}(t, x) & =\sigma^{+} v(t, x), \\
v_{t}(t, x)-\mu v_{x}(t, x) & =\sigma^{-} u(t, x)
\end{aligned}
$$

$\xrightarrow[+]{\text { 0 }} \stackrel{1}{\longrightarrow}$

$$
\begin{aligned}
& u(t, 0)=q v(t, 0)+U(t) \\
& v(t, 1)=\rho u(t, 1)
\end{aligned}
$$

Objective: Move the in-domain coupling terms at the actuated boundary.

$$
u_{t}(t, x)+\lambda u_{x}(t, x)=\sigma^{+} v(t, x),
$$

$$
v_{t}(t, x)-\mu v_{x}(t, x)=\sigma^{-} u(t, x)
$$

$$
\begin{aligned}
& u(t, 0)=q v(t, 0)+U(t) \\
& v(t, 1)=\rho u(t, 1)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0
\end{aligned}
$$

$$
\bar{U}(t) \rightarrow \nearrow \longrightarrow \quad \alpha(t, x)
$$

Objective: Move the in-domain coupling terms at the actuated boundary.

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0
\end{aligned}
$$

$\alpha(t, 0)=q \beta(t, 0)+U(t)$
$-\int_{0}^{1} N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi) d \xi$.
$\beta(t, 1)=\rho \alpha(t, 1)$

Objective: Move the in-domain coupling terms at the actuated boundary.

$$
\begin{aligned}
u_{t}(t, x)+\lambda u_{x}(t, x) & =\sigma^{+} v(t, x), \\
v_{t}(t, x)-\mu v_{x}(t, x) & =\sigma^{-} u(t, x)
\end{aligned}
$$

$$
u(t, 0)=q v(t, 0)+U(t)
$$

$$
v(t, 1)=\rho u(t, 1)
$$

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha(t, 0)=q \beta(t, 0)+U(t) \\
& -\int_{0}^{1} N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi) d \xi . \\
& \beta(t, 1)=\rho \alpha(t, 1)
\end{aligned}
$$

Natural control law
$U(t)=-q \beta(t, 0)+\int_{0}^{1}\left(N^{\alpha}(\xi) \alpha(t, \xi)+N^{\beta}(\xi) \beta(t, \xi)\right) d \xi$.

Backstepping: Volterra transformation

$$
\begin{aligned}
& x(t)=\xi(t)+\int_{0}^{1} M^{12}(y) \alpha(t, y)+M^{13}(y) \beta(t, y) \mathrm{d} y+\left[\begin{array}{ll}
M^{14} & M^{15}
\end{array}\right] \eta(t), \\
& u(t, x)=\alpha(t, x)+\int_{x}^{1} M^{22}(x, y) \alpha(y)+M^{23}(x, y) \beta(y) \mathrm{d} y+\left[\begin{array}{ll}
M^{24}(x) & M^{25}(x)
\end{array}\right] \eta(t), \\
& v(t, x)=\beta(t, x)+\int_{x}^{1} M^{32}(x, y) \alpha(y)+M^{33}(x, y) \beta(y) \mathrm{d} y+\left[\begin{array}{ll}
M^{34}(x) & M^{35}(x)
\end{array}\right] \eta(t), \\
& Y(t)=\eta(t) .
\end{aligned}
$$

- Triangular transformation: invertible.

$$
\left(\begin{array}{c}
x(t) \\
u(t, x) \\
v(t, x) \\
Y(t)
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{Id} & \int_{0}^{1} M^{12}(y) d y & \int_{0}^{1} M^{13}(y) d y & {\left[M^{14} M^{15}\right]} \\
0 & \mathrm{Id}+\int_{x}^{1} M^{22}(x, y) d y & \left.\int_{x}^{1} M^{23}(x), y\right) d y & {\left[M^{24}(x) M^{25}(x)\right]} \\
0 & \int_{x}^{1} M^{32}(x, y) d y & \operatorname{Id}+\int_{x}^{1} M^{33}(x, y) d y & {\left[M^{34}(x) M^{35}(x)\right]} \\
0 & 0 & 0 & 1 d
\end{array}\right)\left(\begin{array}{c}
\xi(t) \\
\alpha(t, x) \\
\beta(t, x) \\
\eta(t)
\end{array}\right)
$$

- Kernels are bounded functions.
- Unique solution due to the rank condition on C_{0}.

Backstepping: Target system

Original system:

$\underline{\text { Target system: }}$

Backstepping: Target system

Original system:

$$
\left\{\begin{array}{l}
\dot{X}(t)=A_{0} X(t)+E_{0} v(t, 0)+B_{X} U(t), \\
\partial_{t} u(t, x)+\Lambda^{+} \partial_{x} u(t, x)=\sigma^{+-}(x) u(t, x), \\
\partial_{t} v(t, x)-\Lambda^{-} \partial_{x} v(t, x)=\sigma^{-+}(x) u(t, x) \\
u(t, 0)=C_{0} X(t)+q v(t, 0), \quad v(t, 1)=\rho u(t, 1)+C_{1} Y(t), \\
\dot{Y}(t)=A_{1} Y(t)+\left(E_{1} \quad 0\right)^{\top} u(t, 1),
\end{array}\right.
$$

Target system:

$$
\begin{gathered}
\left\{\begin{array}{c}
\dot{\xi}(t)=\bar{A}_{0} \xi(t)+\bar{E}_{1} \alpha(t, 1)+\bar{E}_{0} \beta(t, 0)+M \eta(t) \\
\quad+\int_{0}^{1} M_{\alpha}(y) \alpha(t, y)+M_{\beta}(y) \beta(t, y) d y+B_{X} \bar{U}(t), \\
\partial_{t} \alpha(t, x)+\Lambda^{+} \partial_{x} \alpha(t, x)=0, \\
\partial_{t} \beta(t, x)-\Lambda_{-}^{-} \partial_{x} \beta(t, x)=0, \\
\alpha(t, 0)=C_{0} \xi(t)+q \beta(t, 0), \\
\dot{\eta}(t)=\bar{A}_{1} \eta(t)+\left(\begin{array}{cc}
E_{1} & 0
\end{array}\right)^{\top} \alpha(t, 1),
\end{array}\right. \\
\bar{A}_{0}=A_{0}+B_{X} F_{0}, \bar{A}_{1}=\left(\begin{array}{cc}
A_{11}+E_{1} F_{1} & A_{12}+E_{1}\left(F_{a}+F_{1} T_{a}\right) \\
0 & A_{22}
\end{array}\right)
\end{gathered}
$$

Advantages of the target system:

- Simplified in-domain couplings.
- Almost a "cascade structure"
- To stabilize the whole system, we can focus on the stabilization of ξ.

A cascade structure

$$
\left\{\begin{array}{l}
\quad \dot{\xi}(t)=\bar{A}_{0} \xi(t)+\bar{E}_{1} \alpha(t, 1)+\bar{E}_{0} \beta(t, 0)+M \eta(t) \\
\quad+\int_{0}^{1} M_{\alpha}(y) \alpha(t, y)+M_{\beta}(y) \beta(t, y) d y+B_{X} \bar{U}(t), \\
\\
\partial_{t} \alpha(t, x)+\Lambda^{+} \partial_{x} \alpha(t, x)=0, \\
\\
\partial_{t} \beta(t, x)-\Lambda^{-} \partial_{x} \beta(t, x)=0, \\
\alpha(t, 0)=C_{0} \xi(t)+q \beta(t, 0), \quad \beta(t, 1)=\rho \alpha(t, 1), \\
\\
\dot{\eta}(t)=\bar{A}_{1} \eta(t)+\left(E_{1} \quad 0\right)^{\top} \alpha(t, 1),
\end{array}\right.
$$

Stability and regulation

If $C_{0} \xi$ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.

A cascade structure

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_{a} \in \mathbb{R}^{q_{1} \times q_{2}}, F_{a} \in \mathbb{R}^{n \times q_{2}}$ solutions to the regulator equations:

$$
\left\{\begin{array}{l}
-A_{11} T_{a}+T_{a} A_{22}+A_{12}=-E_{1} F_{a} \\
-C_{e 1} T_{a}+C_{e 2}=0 .
\end{array}\right.
$$

Stability and regulation

If ξ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.
Proof: If $C_{0} \xi$ converges to zero, then so does $\|(\alpha, \beta)\|_{L^{2}}$.

- We have

$$
\begin{aligned}
\dot{Y}_{1} & =\left(A_{11}+E_{1} F_{1}\right) Y_{1}(t)+\left(A_{12}+E_{1}\left(F_{a}+F_{1} T_{a}\right)\right) Y_{2}(t)+E_{1} \alpha(t, 1) \\
& =\left(A_{11}+E_{1} F_{1}\right) Y_{1}(t)+\left(A_{11} T_{a}-E_{1} F_{a}-T_{a} A_{22}\right) Y_{2}(t)+E_{1}\left(F_{a}+F_{1} T_{a}\right) Y_{2}(t)+E_{1} \alpha(t, 1), \\
\Rightarrow & \overbrace{\left(Y_{1}+T_{a} Y_{2}\right)}(t)=\bar{A}_{11}\left(Y_{1}+T_{a} Y_{2}\right)+\overbrace{E_{1} \alpha(t, 1)}^{\rightarrow 0} .
\end{aligned}
$$

A cascade structure

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_{a} \in \mathbb{R}^{q_{1} \times q_{2}}, F_{a} \in \mathbb{R}^{n \times q_{2}}$ solutions to the regulator equations:

$$
\left\{\begin{array}{l}
-A_{11} T_{a}+T_{a} A_{22}+A_{12}=-E_{1} F_{a} \\
-C_{e 1} T_{a}+C_{e 2}=0
\end{array}\right.
$$

Stability and regulation

If ξ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.
Proof: If $C_{0} \xi$ converges to zero, then so does $\|(\alpha, \beta)\|_{L^{2}}$.

- We have

$$
\begin{aligned}
\dot{Y}_{1} & =\left(A_{11}+E_{1} F_{1}\right) Y_{1}(t)+\left(A_{12}+E_{1}\left(F_{a}+F_{1} T_{a}\right)\right) Y_{2}(t)+E_{1} \alpha(t, 1) \\
& =\left(A_{11}+E_{1} F_{1}\right) Y_{1}(t)+\left(A_{11} T_{a}-E_{1} F_{a}-T_{a} A_{22}\right) Y_{2}(t)+E_{1}\left(F_{a}+F_{1} T_{a}\right) Y_{2}(t)+E_{1} \alpha(t, 1), \\
\Rightarrow & \overbrace{\left(Y_{1}+T_{a} Y_{2}\right)}(t)=\bar{A}_{11}\left(Y_{1}+T_{a} Y_{2}\right)+\overbrace{E_{1} \alpha(t, 1)}^{\rightarrow 0} .
\end{aligned}
$$

- $Y_{1}+T_{a} Y_{2} \exp$. stable $\Rightarrow C_{e}\left(Y_{1}+T_{a} Y_{2}\right)(t)=C_{e 1} Y_{1}(t)+C_{e 2} Y_{2}(t)=\varepsilon(t)$ goes to zero.

A cascade structure

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_{a} \in \mathbb{R}^{q_{1} \times q_{2}}, F_{a} \in \mathbb{R}^{n \times q_{2}}$ solutions to the regulator equations:

$$
\left\{\begin{array}{l}
-A_{11} T_{a}+T_{a} A_{22}+A_{12}=-E_{1} F_{a} \\
-C_{e 1} T_{a}+C_{e 2}=0
\end{array}\right.
$$

Stability and regulation

If ξ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.
Proof: If $C_{0} \xi$ converges to zero, then so does $\|(\alpha, \beta)\|_{L^{2}}$.

- We have

$$
\begin{aligned}
\dot{Y}_{1} & =\left(A_{11}+E_{1} F_{1}\right) Y_{1}(t)+\left(A_{12}+E_{1}\left(F_{a}+F_{1} T_{a}\right)\right) Y_{2}(t)+E_{1} \alpha(t, 1) \\
& =\left(A_{11}+E_{1} F_{1}\right) Y_{1}(t)+\left(A_{11} T_{a}-E_{1} F_{a}-T_{a} A_{22}\right) Y_{2}(t)+E_{1}\left(F_{a}+F_{1} T_{a}\right) Y_{2}(t)+E_{1} \alpha(t, 1) \\
\Rightarrow & \overbrace{\left(Y_{1}+T_{a} Y_{2}\right)}(t)=\bar{A}_{11}\left(Y_{1}+T_{a} Y_{2}\right)+\overbrace{E_{1} \alpha(t, 1)}^{\rightarrow 0}
\end{aligned}
$$

- $Y_{1}+T_{a} Y_{2} \exp$. stable $\Rightarrow C_{e}\left(Y_{1}+T_{a} Y_{2}\right)(t)=C_{e 1} Y_{1}(t)+C_{e 2} Y_{2}(t)=\varepsilon(t)$ goes to zero.
- Invertibility + boundedness of the backstepping transf. implies boundedness of the state.

Time-delay representation

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0 \\
\alpha(t, 0) & =q \beta(t, 0)+c_{0} \xi(t) \\
\beta(t, 1) & =\rho \alpha(t, 1)
\end{aligned}
$$

Time-delay representation

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \rightarrow \text { Transport equation } \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0 \rightarrow \text { Transport equation } \\
\alpha(t, 0) & =q \beta(t, 0)+c_{0} \xi(t) \\
\beta(t, 1) & =\rho \alpha(t, 1)
\end{aligned}
$$

Time-delay representation

$$
\begin{aligned}
\alpha_{t}(t, x)+\lambda \alpha_{x}(t, x) & =0 \rightarrow \text { Transport equation } \\
\beta_{t}(t, x)-\mu \beta_{x}(t, x) & =0 \rightarrow \text { Transport equation } \\
\alpha(t, 0) & =q \beta(t, 0)+c_{0} \xi(t) \\
\beta(t, 1) & =\rho \alpha(t, 1)
\end{aligned}
$$

Method of characteristics:

$$
\alpha(t, x)=\alpha\left(t-\frac{x}{\lambda}, 0\right), \quad \beta(t, x)=\rho \alpha\left(t-\frac{(1-x)}{\mu}-\frac{1}{\lambda}, 0\right)
$$

Difference Equation satisfied by $\alpha(t, 0)$

$$
\alpha(t, 0)=\rho q \alpha(t-\tau, 0)+C_{0} \xi(t), \quad t>\frac{1}{\lambda}+\frac{1}{\mu}=\tau
$$

Using the Laplace transform: $\left(1-\rho q \mathrm{e}^{-\tau s}\right) \alpha(s, 0)=C_{0} \xi(s)$
We can kill the α and β terms to obtain ξ-terms!

Time-delay representation

$$
\begin{aligned}
& \dot{\eta}(t)=\bar{A}_{1} \eta(t)+\left(\begin{array}{ll}
E_{1} & 0
\end{array}\right)^{\top} \alpha(t, 1) \\
& \dot{\xi}(t)=\bar{A}_{0} \xi(t)+\bar{E}_{1} \alpha(t, 1)+\bar{E}_{0} \beta(t, 0)+M \eta(t)+\int_{0}^{1} M_{\alpha}(y) \alpha(t, y)+M_{\beta}(y) \beta(t, y) d y+B_{X} \bar{U}(t) .
\end{aligned}
$$

Laplace transform on η_{1}

$$
\eta_{1}(s)=\left(s l d-\bar{A}_{11}\right)^{-1}\left(\bar{A}_{12} \eta_{2}(s)+E_{1} \mathrm{e}^{-\frac{s}{\lambda}} \alpha(s, 0)\right)
$$

We can get rid of the η_{1}-terms!

Time-delay representation

$\dot{\eta}(t)=\bar{A}_{1} \eta(t)+\left(\begin{array}{ll}E_{1} & 0\end{array}\right)^{\top} \alpha(t, 1)$
$\dot{\xi}(t)=\bar{A}_{0} \xi(t)+\bar{E}_{1} \alpha(t, 1)+\bar{E}_{0} \beta(t, 0)+M \eta(t)+\int_{0}^{1} M_{\alpha}(y) \alpha(t, y)+M_{\beta}(y) \beta(t, y) d y+B_{\chi} \bar{U}(t)$.
Laplace transform on η_{1}

$$
\eta_{1}(s)=\left(s l d-\bar{A}_{11}\right)^{-1}\left(\bar{A}_{12} \eta_{2}(s)+E_{1} \mathrm{e}^{-\frac{s}{\lambda}} \alpha(s, 0)\right)
$$

We can get rid of the η_{1}-terms!
Laplace transform on ξ

$$
\left(s \operatorname{ld}-\bar{A}_{0}\right) \xi(s)=G(s) C_{0} \xi(s)+H(s) \eta_{2}(s)+B_{X} \bar{U}(s)
$$

$P_{0}=C_{0}\left(\text { sld }-\bar{A}_{0}\right)^{-1} B_{X}$ admits a stable right inverse P_{0}^{+}.

$$
C_{0} \xi(s)=C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0} \xi(s)+C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} H(s) \eta_{2}(s)+P_{0}(s) \bar{U}(s),
$$

Time-delay representation

$\dot{\eta}(t)=\bar{A}_{1} \eta(t)+\left(\begin{array}{ll}E_{1} & 0\end{array}\right)^{\top} \alpha(t, 1)$
$\dot{\xi}(t)=\bar{A}_{0} \xi(t)+\bar{E}_{1} \alpha(t, 1)+\bar{E}_{0} \beta(t, 0)+M \eta(t)+\int_{0}^{1} M_{\alpha}(y) \alpha(t, y)+M_{\beta}(y) \beta(t, y) d y+B_{\chi} \bar{U}(t)$.
Laplace transform on η_{1}

$$
\eta_{1}(s)=\left(s l d-\bar{A}_{11}\right)^{-1}\left(\bar{A}_{12} \eta_{2}(s)+E_{1} \mathrm{e}^{-\frac{s}{\lambda}} \alpha(s, 0)\right)
$$

We can get rid of the η_{1}-terms!
Laplace transform on ξ

$$
\left(s \operatorname{ld}-\bar{A}_{0}\right) \xi(s)=G(s) C_{0} \xi(s)+H(s) \eta_{2}(s)+B_{X} \bar{U}(s)
$$

$P_{0}=C_{0}\left(\text { sld }-\bar{A}_{0}\right)^{-1} B_{X}$ admits a stable right inverse P_{0}^{+}.

$$
C_{0} \xi(s)=C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s) C_{0} \xi(s)+C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} H(s) \eta_{2}(s)+P_{0}(s) \bar{U}(s),
$$

Stabilizing control law

$$
\bar{U}(s)=\underbrace{-P_{0}^{+}(s) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s) C_{0} \xi(s)}_{\text {stabilization }}-\underbrace{P_{0}^{+}(s) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} H(s) \eta_{2}(s)}_{\text {disturbance rejection or tracking }}
$$

A non strictly proper control law

Stabilizing control law

$$
\begin{aligned}
\bar{U}(s) & =\underbrace{-P_{0}^{+}(s) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s) C_{0} \xi(s)}_{\text {stabilization }}-\underbrace{P_{0}^{+}(s) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} H(s) \eta_{2}(s)}_{\text {disturbance rejection or tracking }} \\
& =F_{\xi}(s) \xi(s)+F_{\eta}(s) \eta_{2}(s)
\end{aligned}
$$

- The control law ay not be strictly proper due to $P_{0}^{+}(s) \rightarrow$ Robustness issues.
- We can make $F_{\eta}(s)$ strictly proper using our prior knowledge of the dynamics.
- We can make $F_{\xi}(s)$ strictly proper using a low-pass filter.

Filtering of the control input

$$
F_{\xi}(s)=-P_{0}^{+}(s) C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0}, \quad F_{\eta}(s)=-P_{0}^{+}(s) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} H(s)
$$

Filtered control law

Let $\mathrm{w}(s)$ be any low-pass filter, with a sufficiently high relative degree, and $0<\delta<1$ such that

$$
\forall x \in \mathbb{R},|1-\mathrm{w}(j x)| \leq \frac{1-\delta}{\|G\|_{\infty} \bar{\sigma}\left(C_{0}\left(j x \operatorname{ld}-\bar{A}_{0}\right)^{-1}\right)}
$$

then $\bar{U}(s)=w(s) F_{\xi}(s) \xi(s)+\bar{F}_{\eta}(s) \eta_{2}(s)$ stabilizes $C_{0} \xi(s)$
Proof: Let $\Phi(s)=(1-w(s)) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s)$.

Filtering of the control input

$F_{\xi}(s)=-P_{0}^{+}(s) C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0}, \quad F_{\eta}(s)=-P_{0}^{+}(s) C_{0}\left(s l d ~-\bar{A}_{0}\right)^{-1} H(s)$

Filtered control law

Let $\mathrm{w}(s)$ be any low-pass filter, with a sufficiently high relative degree, and $0<\delta<1$ such that

$$
\forall x \in \mathbb{R},|1-\mathrm{w}(j x)| \leq \frac{1-\delta}{\|G\|_{\infty} \bar{\sigma}\left(C_{0}\left(j x \mathrm{ld}-\bar{A}_{0}\right)^{-1}\right)}
$$

then $\bar{U}(s)=w(s) F_{\xi}(s) \xi(s)+\bar{F}_{\eta}(s) \eta_{2}(s)$ stabilizes $C_{0} \xi(s)$
Proof: Let $\Phi(s)=(1-w(s)) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s)$.

- Φ is stable and strictly proper

Filtering of the control input

$F_{\xi}(s)=-P_{0}^{+}(s) C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0}, \quad F_{\eta}(s)=-P_{0}^{+}(s) C_{0}\left(s l d ~-\bar{A}_{0}\right)^{-1} H(s)$

Filtered control law

Let $\mathrm{w}(s)$ be any low-pass filter, with a sufficiently high relative degree, and $0<\delta<1$ such that

$$
\forall x \in \mathbb{R},|1-\mathrm{w}(j x)| \leq \frac{1-\delta}{\|G\|_{\infty} \bar{\sigma}\left(C_{0}\left(j x \mathrm{ld}-\bar{A}_{0}\right)^{-1}\right)}
$$

then $\bar{U}(s)=w(s) F_{\xi}(s) \xi(s)+\bar{F}_{\eta}(s) \eta_{2}(s)$ stabilizes $C_{0} \xi(s)$
Proof: Let $\Phi(s)=(1-w(s)) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s)$.

- Φ is stable and strictly proper
- $G(s)$ is unif. bounded, we have $\bar{\sigma}(G(j x)) \leq\|G\|_{\infty}$ for all x

Filtering of the control input

$F_{\xi}(s)=-P_{0}^{+}(s) C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0}, \quad F_{\eta}(s)=-P_{0}^{+}(s) C_{0}\left(s l d ~-\bar{A}_{0}\right)^{-1} H(s)$

Filtered control law

Let $\mathrm{w}(s)$ be any low-pass filter, with a sufficiently high relative degree, and $0<\delta<1$ such that

$$
\forall x \in \mathbb{R},|1-\mathrm{w}(j x)| \leq \frac{1-\delta}{\|G\|_{\infty} \bar{\sigma}\left(C_{0}\left(j x \mathrm{ld}-\bar{A}_{0}\right)^{-1}\right)}
$$

then $\bar{U}(s)=w(s) F_{\xi}(s) \xi(s)+\bar{F}_{\eta}(s) \eta_{2}(s)$ stabilizes $C_{0} \xi(s)$
Proof: Let $\Phi(s)=(1-w(s)) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s)$.

- Φ is stable and strictly proper
- $G(s)$ is unif. bounded, we have $\bar{\sigma}(G(j x)) \leq\|G\|_{\infty}$ for all x
- We have $\bar{\sigma}(\phi(j x)) \leq 1-\delta \Rightarrow\|\Phi\|_{\infty}<1$

Filtering of the control input

$F_{\xi}(s)=-P_{0}^{+}(s) C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0}, \quad F_{\eta}(s)=-P_{0}^{+}(s) C_{0}\left(s l d ~-\bar{A}_{0}\right)^{-1} H(s)$

Filtered control law

Let $\mathrm{w}(s)$ be any low-pass filter, with a sufficiently high relative degree, and $0<\delta<1$ such that

$$
\forall x \in \mathbb{R},|1-\mathrm{w}(j x)| \leq \frac{1-\delta}{\|G\|_{\infty} \bar{\sigma}\left(C_{0}\left(j x \mathrm{ld}-\bar{A}_{0}\right)^{-1}\right)}
$$

then $\bar{U}(s)=w(s) F_{\xi}(s) \xi(s)+\bar{F}_{\eta}(s) \eta_{2}(s)$ stabilizes $C_{0} \xi(s)$
Proof: Let $\Phi(s)=(1-w(s)) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s)$.

- Φ is stable and strictly proper
- $G(s)$ is unif. bounded, we have $\bar{\sigma}(G(j x)) \leq\|G\|_{\infty}$ for all x
- We have $\bar{\sigma}(\phi(j x)) \leq 1-\delta \Rightarrow\|\Phi\|_{\infty}<1$
- Characteristic equation $(1-\Phi(s)) C_{0} \xi(s)=0 \rightarrow$ exponential stability

Filtering of the control input

$F_{\xi}(s)=-P_{0}^{+}(s) C_{0}\left(s \operatorname{ld}-\bar{A}_{0}\right)^{-1} G(s) C_{0}, \quad F_{\eta}(s)=-P_{0}^{+}(s) C_{0}\left(s l d ~-\bar{A}_{0}\right)^{-1} H(s)$

Filtered control law

Let $\mathrm{w}(s)$ be any low-pass filter, with a sufficiently high relative degree, and $0<\delta<1$ such that

$$
\forall x \in \mathbb{R},|1-\mathrm{w}(j x)| \leq \frac{1-\delta}{\|G\|_{\infty} \bar{\sigma}\left(C_{0}\left(j x \mathrm{ld}-\bar{A}_{0}\right)^{-1}\right)}
$$

then $\bar{U}(s)=w(s) F_{\xi}(s) \xi(s)+\bar{F}_{\eta}(s) \eta_{2}(s)$ stabilizes $C_{0} \xi(s)$
Proof: Let $\Phi(s)=(1-w(s)) C_{0}\left(s l d-\bar{A}_{0}\right)^{-1} G(s)$.

- Φ is stable and strictly proper
- $G(s)$ is unif. bounded, we have $\bar{\sigma}(G(j x)) \leq\|G\|_{\infty}$ for all x
- We have $\bar{\sigma}(\phi(j x)) \leq 1-\delta \Rightarrow\|\Phi\|_{\infty}<1$
- Characteristic equation $(1-\Phi(s)) C_{0} \xi(s)=0 \rightarrow$ exponential stability

Strictly proper stabilizing control law!

Summary state-feedback

- Backstepping transformation to simplify the dynamics and the design of the control law.
- The regulation problem rewrites as a stabilization problem.
- Time-delay representation and frequency analysis.
- Low-pass filtering of the control law to make it strictly proper.

Observer design

$$
\left\{\begin{array}{l}
\dot{X}(t)=A_{0} X(t)+E_{0} v(t, 0)+B_{X} U(t), \\
\partial_{t} u(t, x)+\Lambda^{+} \partial_{x} u(t, x)=\Sigma^{++}(x) u(t, x)+\Sigma^{+-}(x) v(t, x), \\
\partial_{t} v(t, x)-\Lambda^{-} \partial_{x} v(t, x)=\Sigma^{-+}(x) u(t, x)+\Sigma^{--}(x) v(t, x), \\
u(t, 0)=C_{0} X(t)+Q v(t, 0), \quad v(t, 1)=R u(t, 1)+C_{1} Y(t), \\
\dot{Y}(t)=A_{11} Y(t)+E_{1} u(t, 1), \\
y=C_{\text {mes }} Y(t), \quad \operatorname{dim}(y) \geq \operatorname{dim}(u)
\end{array}\right.
$$

Problem statement

Design a state observer for the system based on the available measurement $y(t)$.

Methodology

- Backstepping transformation to simplify the dynamics and the design of the observer.

Methodology

- Backstepping transformation to simplify the dynamics and the design of the observer.
- Luenberger-like observer with operators O_{i} that need to be tuned.

Methodology

- Backstepping transformation to simplify the dynamics and the design of the observer.
- Luenberger-like observer with operators O_{i} that need to be tuned.
- Design of the operators O_{i} to guarantee the exponential stability of the error system

Methodology

- Backstepping transformation to simplify the dynamics and the design of the observer.
- Luenberger-like observer with operators O_{i} that need to be tuned.
- Design of the operators O_{i} to guarantee the exponential stability of the error system
- Convergence of the observer state to the real state.

Backstepping: Target system

Original system:

Target system

Backstepping: Target system

Target system

$$
\dot{\xi}(t)=\tilde{A}_{0} \xi(t)+G_{3} \alpha(t, 1)+G_{4} Y(t)+B_{X} U(t)
$$

$$
\alpha(t, 0)=Q \beta(t, 0)+C_{0} \xi(t)+\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) Y(t)+\int_{0}^{1} F^{\alpha}(y) \alpha(t, y)+F^{\beta}(y) \beta(t, y) d y
$$

$$
\alpha_{t}(t, x)+\Lambda^{+} \alpha_{x}(t, x)=G_{1}(x) \alpha(t, 1)
$$

$$
\beta_{t}(t, x)-\Lambda^{-} \beta_{x}(t, x)=G_{2}(x) \alpha(t, 1)
$$

$$
\beta(t, 1)=R \alpha(t, 1), \dot{Y}(t)=A_{1} Y(t)+E_{1} \alpha(t, 1)
$$

Backstepping: Target system

$\underline{T a r g e t ~ s y s t e m ~}$

Advantages of the target system:

- Simplified in-domain couplings.
- Almost a "cascade structure" (except for the $\alpha(t, 1)$-terms);
- Simplified observer design

Backstepping: Volterra transformation

$$
\begin{aligned}
x(t) & =\xi(t)-\int_{0}^{1} L_{1}(y) \alpha(y)+L_{2}(y) \beta(y) d y, \\
u(t, x) & =\alpha(t, x)-\int_{x}^{1} L^{\alpha \alpha}(x, y) \alpha(y) d y-\int_{x}^{1} L^{\alpha \beta}(x, y) \beta(y) d y+\gamma_{\alpha}(x) Y(t), \\
v(t, x) & =\beta(t, x)-\int_{x}^{1} L^{\beta \alpha}(x, y) \alpha(y) d y-\int_{x}^{1} L^{\beta \beta}(x, y) \beta(y) d y+\gamma_{\beta}(x) Y(t), \\
Y(t) & =Y(t),
\end{aligned}
$$

- Triangular transformation: invertible.
- Kernels are bounded functions.

Observer equations

System (ξ, α, β, Y)

$$
\begin{aligned}
& \dot{\xi}(t)=\tilde{A}_{0} \xi(t)+G_{3} \alpha(t, 1)+G_{4} Y(t)+B_{X} U(t) \\
& \alpha(t, 0)=Q \beta(t, 0)+C_{0} \xi(t)+\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) Y(t)+\int_{0}^{1} F^{\alpha}(y) \alpha(t, y)+F^{\beta}(y) \beta(t, y) d y, \\
& \alpha_{t}(t, x)+\Lambda^{+} \alpha_{x}(t, x)=G_{1}(x) \alpha(t, 1) \\
& \beta_{t}(t, x)-\Lambda^{-} \beta_{x}(t, x)=G_{2}(x) \alpha(t, 1) \\
& \beta(t, 1)=R \alpha(t, 1), \dot{Y}(t)=A_{1} Y(t)+E_{1} \alpha(t, 1) .
\end{aligned}
$$

System $(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{\gamma}): \quad O_{i}:$ stable operators.

$$
\begin{aligned}
& \dot{\hat{\xi}}(t)=\tilde{A}_{0} \hat{\xi}(t)+G_{3} \hat{\alpha}(t, 1)+G_{4} \hat{Y}(t)-O_{0}(\tilde{y}) \\
& \hat{\alpha}(t, 0)=Q \hat{\beta}(t, 0)+C_{0} \hat{\xi}(t)+\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) \hat{Y}(t) \\
& \quad+\int_{0}^{1} F^{\alpha}(y) \hat{\alpha}(t, y)+F^{\beta}(y) \hat{\beta}(t, y) d y-O_{1}(\tilde{y}) \\
& \hat{\alpha}_{t}(t, x)+\Lambda^{+} \hat{\alpha}_{x}(t, x)=G_{1}(x) \hat{\alpha}(t, 1)-O_{\alpha}(x, \tilde{y}) \\
& \hat{\beta}_{t}(t, x)-\Lambda^{-} \hat{\beta}_{x}(t, x)=G_{2}(x) \hat{\alpha}(t, 1)-O_{\beta}(x, \tilde{y}), \\
& \hat{\beta}(t, 1)=R \hat{\alpha}(t, 1), \quad \dot{\hat{Y}}(t)=A_{1} \hat{Y}(t)+E_{1} \hat{\alpha}(t, 1)-L_{1} C \tilde{y},
\end{aligned}
$$

Error system

$$
\begin{aligned}
& \dot{\tilde{\xi}}(t)=\tilde{A}_{0} \tilde{\xi}(t)+G_{3} \tilde{\alpha}(t, 1)+G_{4} \tilde{Y}(t)+B_{X} U(t) O_{0}(\tilde{y}), \\
& \tilde{\alpha}(t, 0)=C_{0} \tilde{\xi}(t)+Q \tilde{\beta}(t, 0)+\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) \tilde{Y}(t) \\
& \quad+\int_{0}^{1} F^{\alpha}(y) \tilde{\alpha}(t, y)+F^{\beta}(y) \tilde{\beta}(t, y) d y+O_{1}(\tilde{y}) \\
& \tilde{\alpha}_{t}(t, x)+\Lambda^{+} \tilde{\alpha}_{x}(t, x)=G_{1}(x) \tilde{\alpha}(t, 1)+O_{\alpha}(x, \tilde{y}) \\
& \tilde{\beta}_{t}(t, x)-\Lambda^{-} \tilde{\beta}_{x}(t, x)=G_{2}(x) \tilde{\alpha}(t, 1)+O_{\beta}(x, \tilde{y}) \\
& \tilde{\beta}(t, 1)=R \tilde{\alpha}(t, 1), \quad \dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)
\end{aligned}
$$

- Objective: Tune the gains O_{i} such that the error system exponentially converges to zero.

Lemma: Cascade structure of the error system

If $\tilde{\xi}(t), \tilde{\alpha}(t, 1)$ and $\tilde{Y}(t)$ exponentially converge to zero, then the state $(\tilde{\xi}, \tilde{\alpha}, \tilde{\beta}, \tilde{Y})$ exponentially converges to zero. This implies the convergence of the observer state to the real state.

Design of the operators O_{i}

- Laplace transform of $\dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)$:

$$
\left(s \operatorname{ld}-\tilde{A}_{1}\right) \tilde{Y}(s)=E_{1} \tilde{\alpha}(s, 1) \rightarrow \tilde{y}(s)=C_{m e s}\left(s \operatorname{ld}-\tilde{A}_{1}\right)^{-1} E_{1} \tilde{\alpha}(s, 1)
$$

where \tilde{A}_{1} is Hurwitz (Assumption 4) and $C_{\text {mes }}\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1}$ has no zeros in the RHP (Assumption 2)

Design of the operators O_{i}

- Laplace transform of $\dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)$:

$$
\left(s \operatorname{ld}-\tilde{A}_{1}\right) \tilde{Y}(s)=E_{1} \tilde{\alpha}(s, 1) \rightarrow \tilde{y}(s)=C_{m e s}\left(s \operatorname{ld}-\tilde{A}_{1}\right)^{-1} E_{1} \tilde{\alpha}(s, 1)
$$

where \tilde{A}_{1} is Hurwitz (Assumption 4) and $C_{m e s}\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1}$ has no zeros in the RHP (Assumption 2)

- $P_{1}(s)=C_{m e s}\left(\text { sld }-\tilde{A}_{1}\right)^{-1} E_{1}$ has a stable left-inverse (Assumption 4):

$$
\tilde{\alpha}(s, 1)=P_{1}^{-}(s) \tilde{y}(s), \quad \tilde{Y}(s)=\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1} P_{1}^{-}(s) \tilde{y}(s)
$$

Terms that are functions \tilde{Y} and $\tilde{\alpha}(s, 1)$ can be (exponentially) compensated using stable filters and values of $\tilde{y}(s)$.

Design of the operators O_{i}

- Laplace transform of $\dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)$:

$$
\left(s \operatorname{ld}-\tilde{A}_{1}\right) \tilde{Y}(s)=E_{1} \tilde{\alpha}(s, 1) \rightarrow \tilde{y}(s)=C_{m e s}\left(s \operatorname{ld}-\tilde{A}_{1}\right)^{-1} E_{1} \tilde{\alpha}(s, 1)
$$

where \tilde{A}_{1} is Hurwitz (Assumption 4) and $C_{m e s}\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1}$ has no zeros in the RHP (Assumption 2)

- $P_{1}(s)=C_{m e s}\left(\operatorname{sld}-\tilde{A}_{1}\right)^{-1} E_{1}$ has a stable left-inverse (Assumption 4):

$$
\tilde{\alpha}(s, 1)=P_{1}^{-}(s) \tilde{y}(s), \quad \tilde{Y}(s)=\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1} P_{1}^{-}(s) \tilde{y}(s)
$$

Terms that are functions \tilde{Y} and $\tilde{\alpha}(s, 1)$ can be (exponentially) compensated using stable filters and values of $\tilde{y}(s)$.

- We have $\dot{\tilde{\xi}}(t)=\tilde{A}_{0} \tilde{\xi}(t)+G_{3} \tilde{\alpha}(t, 1)+G_{4} \tilde{Y}(t)+O_{0}(\tilde{y})$

$$
O_{0}(\tilde{y}(s))=-\left(G_{3} P_{1}^{-}(s)+G_{4}\left(s \operatorname{ld}-\tilde{A}_{1}\right)^{-1} E_{1} P_{1}^{-}(s)\right) \tilde{y}(s) \Rightarrow\left(s \operatorname{ld}-\tilde{A}_{0}\right) \tilde{\xi}(s)=0
$$

Exponential convergence of $\tilde{\xi}$ to 0 .

Design of the operators O_{i}

$$
\alpha(s, 1)=P_{1}^{-}(s) \tilde{Y}(s), \quad \tilde{y}(s)=\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1} P_{1}^{-}(s) \tilde{y}(s)
$$

- We have $\tilde{\alpha}_{t}(t, x)+\Lambda^{+} \tilde{\alpha}_{x}(t, x)=G_{1}(x) \tilde{\alpha}(t, 1)+O_{\alpha}(x, \tilde{y})$. Thus

$$
O_{\alpha}(x, \tilde{y})=-G_{1}(x) P_{1}^{-}(s) \tilde{y}(s) \Rightarrow \tilde{\alpha}_{t}(t, x)+\Lambda^{+} \tilde{\alpha}_{x}(t, x)=0 \Rightarrow \tilde{\alpha}_{i}(t, x)=\tilde{\alpha}_{i}\left(t-\frac{x}{\lambda_{i}}, 0\right)
$$

Design of the operators O_{i}

$$
\alpha(s, 1)=P_{1}^{-}(s) \tilde{Y}(s), \quad \tilde{y}(s)=\left(s l d-\tilde{A}_{1}\right)^{-1} E_{1} P_{1}^{-}(s) \tilde{y}(s)
$$

- We have $\tilde{\alpha}_{t}(t, x)+\Lambda^{+} \tilde{\alpha}_{x}(t, x)=G_{1}(x) \tilde{\alpha}(t, 1)+O_{\alpha}(x, \tilde{y})$. Thus

$$
O_{\alpha}(x, \tilde{y})=-G_{1}(x) P_{1}^{-}(s) \tilde{y}(s) \Rightarrow \tilde{\alpha}_{t}(t, x)+\Lambda^{+} \tilde{\alpha}_{x}(t, x)=0 \Rightarrow \tilde{\alpha}_{i}(t, x)=\tilde{\alpha}_{i}\left(t-\frac{x}{\lambda_{i}}, 0\right)
$$

- We have $\tilde{\beta}_{t}(t, x)-\Lambda^{-} \tilde{\beta}_{x}(t, x)=G_{2}(x) \tilde{\alpha}(t, 1)+O_{\beta}(x, \tilde{y})$. Thus

$$
\begin{aligned}
O_{\beta}(x, \tilde{y}) & =-G_{2}(x) P_{1}^{-}(s) \tilde{y}(s) \Rightarrow \tilde{\beta}_{t}(t, x)-\Lambda^{-} \tilde{\beta}_{x}(t, x)=0 \\
& \Rightarrow \beta_{j}(t, x)=\sum_{k=1}^{n} R_{j k} \tilde{\alpha}_{k}\left(t-\frac{1-x}{\mu_{j}}, 1\right)
\end{aligned}
$$

An Integral Difference Equation

- The function $\tilde{\alpha}(t, 0)$ verifies

$$
\begin{aligned}
& \tilde{\alpha}_{i}(s, 0)=\left(\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) \tilde{Y}\right)_{i}+\left(O_{1}(\tilde{y})\right)_{i}+\sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{i k} R_{k \ell} \mathrm{e}^{-\frac{s}{\mu_{k}}-\frac{s}{\lambda_{\ell}}} \tilde{\alpha}_{\ell}(s, 0) \\
& +\int_{0}^{1} \sum_{k=1}^{m} \sum_{\ell=1}^{n} F_{i k}^{\beta}(v) R_{k \ell} \mathrm{e}^{-\frac{s(1-v)}{\mu_{k}}} \tilde{\alpha}_{\ell}(s, 1) d v \\
& +\int_{0}^{1} \sum_{j=1}^{i} F_{i j}^{\alpha}(v) \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{j k} R_{k \ell} \mathrm{e}^{-\frac{s v}{\lambda_{j}}} \mathrm{e}^{-\frac{s}{\mu_{k}}} \tilde{\alpha}_{\ell}(s, 1) d v
\end{aligned}
$$

since F^{α} is strictly lower-triangular.

An Integral Difference Equation

- The function $\tilde{\alpha}(t, 0)$ verifies

$$
\begin{aligned}
& \tilde{\alpha}_{i}(s, 0)=\left(\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) \tilde{Y}\right)_{i}+\left(O_{1}(\tilde{y})\right)_{i}+\sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{i k} R_{k \ell} \mathrm{e}^{-\frac{s}{\mu_{k}}-\frac{s}{\lambda_{\ell}}} \tilde{\alpha}_{\ell}(s, 0) \\
& +\int_{0}^{1} \sum_{k=1}^{m} \sum_{\ell=1}^{n} F_{i k}^{\beta}(v) R_{k \ell} \mathrm{e}^{-\frac{s(1-v)}{\mu_{k}}} \tilde{\alpha}_{\ell}(s, 1) d v \\
& +\int_{0}^{1} \sum_{j=1}^{i} F_{i j}^{\alpha}(v) \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{j k} R_{k \ell} \mathrm{e}^{-\frac{s v}{\lambda_{j}}} \mathrm{e}^{-\frac{s}{\mu_{k}}} \tilde{\alpha}_{\ell}(s, 1) d v
\end{aligned}
$$

since F^{α} is strictly lower-triangular.

- Possible to recursively define $O_{1}(\tilde{y})$ such that

$$
\tilde{\alpha}_{i}(t, 0)=\sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{i k} R_{k \ell} \tilde{\alpha}_{\ell}\left(t-\frac{1}{\mu_{k}}-\frac{1}{\lambda_{\ell}}, 0\right)
$$

An Integral Difference Equation

- The function $\tilde{\alpha}(t, 0)$ verifies

$$
\begin{aligned}
& \tilde{\alpha}_{i}(s, 0)=\left(\left(Q \gamma_{\beta}(0)-\gamma_{\alpha}(0)\right) \tilde{Y}\right)_{i}+\left(O_{1}(\tilde{y})\right)_{i}+\sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{i k} R_{k \ell} \mathrm{e}^{-\frac{s}{\mu_{k}}-\frac{s}{\lambda_{\ell}}} \tilde{\alpha}_{\ell}(s, 0) \\
& +\int_{0}^{1} \sum_{k=1}^{m} \sum_{\ell=1}^{n} F_{i k}^{\beta}(v) R_{k \ell} \mathrm{e}^{-\frac{s(1-v)}{\mu_{k}}} \tilde{\alpha}_{\ell}(s, 1) d v \\
& +\int_{0}^{1} \sum_{j=1}^{i} F_{i j}^{\alpha}(v) \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{j k} R_{k \ell} \mathrm{e}^{-\frac{s v}{\lambda_{j}}} \mathrm{e}^{-\frac{s}{\mu_{k}}} \tilde{\alpha}_{\ell}(s, 1) d v
\end{aligned}
$$

since F^{α} is strictly lower-triangular.

- Possible to recursively define $O_{1}(\tilde{y})$ such that

$$
\tilde{\alpha}_{i}(t, 0)=\sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{i k} R_{k \ell} \tilde{\alpha}_{\ell}\left(t-\frac{1}{\mu_{k}}-\frac{1}{\lambda_{\ell}}, 0\right)
$$

- Exponential stabilization of $\tilde{\alpha}(t, 0)$ (and consequently of $\tilde{\alpha}(t, 1))$ due to Assumption 3.

Convergence of the observer

- The states $\tilde{\alpha}(t, 1)$ and $\tilde{\xi}$ exponentially converge to zero.
- We have $\dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)$ with \tilde{A}_{1} Hurwitz. Thus the state \tilde{Y} exponentially converges to zero.
- Stabilization of the error system.

Convergence of the observer

With the proposed operators $O_{0}, O_{\alpha}, O_{\beta}, O_{1}$, the observer state $(\hat{X}, \hat{u}, \hat{v}, \hat{Y})=\mathcal{T}(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y})$ exponentially converges to $(X, u, v, Y), \mathcal{T}$ being the inverse backstepping transformation.

Convergence of the observer

- The states $\tilde{\alpha}(t, 1)$ and $\tilde{\xi}$ exponentially converge to zero.
- We have $\dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)$ with \tilde{A}_{1} Hurwitz. Thus the state \tilde{Y} exponentially converges to zero.
- Stabilization of the error system.

Convergence of the observer

With the proposed operators $O_{0}, O_{\alpha}, O_{\beta}, O_{1}$, the observer state $(\hat{X}, \hat{u}, \hat{v}, \hat{Y})=\mathcal{T}(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y})$ exponentially converges to $(X, u, v, Y), \mathcal{T}$ being the inverse backstepping transformation.

- Possible to low-pass filter the measured output signal to use strictly proper observer operators

Convergence of the observer

- The states $\tilde{\alpha}(t, 1)$ and $\tilde{\xi}$ exponentially converge to zero.
- We have $\dot{\tilde{Y}}(t)=\tilde{A}_{1} \tilde{Y}(t)+E_{1} \tilde{\alpha}(t, 1)$ with \tilde{A}_{1} Hurwitz. Thus the state \tilde{Y} exponentially converges to zero.
- Stabilization of the error system.

Convergence of the observer

With the proposed operators $O_{0}, O_{\alpha}, O_{\beta}, O_{1}$, the observer state $(\hat{X}, \hat{u}, \hat{v}, \hat{Y})=\mathcal{T}(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y})$ exponentially converges to $(X, u, v, Y), \mathcal{T}$ being the inverse backstepping transformation.

- Possible to low-pass filter the measured output signal to use strictly proper observer operators
- The proposed observer could be combined with the previous state-feedback laws to obtain a strictly proper output-feedback controller.

Simulation results

Parameters:
$\lambda=2, \mu=0.7, \sigma^{+-}=1, \sigma^{-+}=0.5, \rho=0.5, q=1.2$.
ODE dynamics in dimension $n=4, m=3, c=2$
$A_{0}=\left[\begin{array}{cccc}0 & 0.14 & 0 & 0.1 \\ 0 & 0 & 0.14 & 0 \\ 0.29 & -0.43 & 0.57 & 0.2 \\ 0 & 0 & 0 & -1.1\end{array}\right], B_{0}=\left[\begin{array}{cc}0 & 0 \\ 0 & -1 \\ 1 & -1 \\ 0 & 0\end{array}\right]$,
$C_{0}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -0.5\end{array}\right]^{T}, E_{0}=\left[\begin{array}{c}2 \\ -1 \\ 0.1 \\ 0\end{array}\right], C_{11}=\left[\begin{array}{c}0 \\ 1 \\ 0.5\end{array}\right]^{T}$
$A_{11}=\left[\begin{array}{ccc}0.29 & 0.14 & 0 \\ 0.14 & 0 & 0.1 \\ 0 & 0 & -0.9\end{array}\right], E_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$.

Unstable system in open-loop.

We want to reject a sinusoidal disturbance

Simulation results

Figure: Evolution of the distal ODE state $Y_{1}(t)$ (blue) in the presence of a disturbance $Y_{\text {dist }}$

Simulation results

Figure: Evolution of the control inputs $U_{1}(t)$ (blue) and $U_{2}(t)$ (red)

Simulation results

Figure: Evolution of the PDE state $v(t, x)$

Simulation results

Figure: Evolution of the norm of the error state

Conclusions and perspectives

- Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking
- Backstepping transformation to simplify the structure of the system
- Frequency analysis to design the control law
- Filtering techniques to guarantee robustness

Conclusions and perspectives

- Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking
- Backstepping transformation to simplify the structure of the system
- Frequency analysis to design the control law
- Filtering techniques to guarantee robustness
- Luenberger-like observer for the ODE-PDE-ODE system
- Backstepping transformation and frequency analysis approach for the error system.
- Output-feedback control law.
- Computational effort?

Conclusions and perspectives

- Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking
- Backstepping transformation to simplify the structure of the system
- Frequency analysis to design the control law
- Filtering techniques to guarantee robustness
- Luenberger-like observer for the ODE-PDE-ODE system
- Backstepping transformation and frequency analysis approach for the error system.
- Output-feedback control law.
- Computational effort?
- Perspectives?
- Model reduction?
- Leverage the different assumptions?
- Structure of the interconnection?

References

业
Aamo，O．M．（2012）．
Disturbance rejection in 2×2 linear hyperbolic systems．
IEEE transactions on automatic control，58（5）：1095－1106．
－Auriol，J．，Bribiesca－Argomedo，F．，and Di Meglio，F．（2019）．
Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems．
In American and Control Conference．
Bekiaris－Liberis，N．and Krstic，M．（2013）．
Nonlinear control under nonconstant delays．
SIAM．
Bou Saba，D．，Bribiesca－Argomedo，F．，Di Loreto，M．，and Eberard，D．（2017）．
Backstepping stabilization of 2×2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics．
In 2017 IEEE 56th Annual Conference on Decision and Control（CDC），pages 2498－2503． IEEE．
Bou Saba，D．，Bribiesca－Argomedo，F．，Di Loreto，M．，and Eberard，D．（2019）．
Strictly proper control design for the stabilization of 2×2 linear hyperbolic ODE－PDE－ODE systems．
In 2019 IEEE 58th Conference on Decision and Control（CDC），pages 4996－5001．IEEE．
Bresch－Pietri，D．（2012）．
Commande robuste de systèmes à retard variable：Contributions théoriques et applicatiôis ${ }^{37}$

