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Motivation

Why hyperbolic systems?

@ Conservation/balance of scalar quantities when taking into account:

> Evolution (e.g., transport) of conserved quantities in space and time
> Finite speed of propagation (vs. heat equation)
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long distances (e.g. pipeline)

slow propagation speeds (e.g. traffic)

spatially dependent characteristics (e.g. composite materials)
anisotropic behavior (e.g. ferromagnetism)
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Motivation

Why hyperbolic systems?

@ Conservation/balance of scalar quantities when taking into account:

> Evolution (e.g., transport) of conserved quantities in space and time
> Finite speed of propagation (vs. heat equation)
@ Natural representation for some industrial processes for which you have
> long distances (e.g. pipeline)
> slow propagation speeds (e.g. traffic)
> spatially dependent characteristics (e.g. composite materials)
> anisotropic behavior (e.g. ferromagnetism)

@ Multiple problems: stabilization, control, observability, parameter estimation...
> Wave equation: dgw(t,x) — c2dxw(t,x) = 0.

Mathematically, this may look something like:
arp(t, x) = Vi(t,x)+ S(t,x), V¥(t,x)€][0,T]xQ,

where p is the quantity conserved, f is a flux density and S is a source term.
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Motivation

Many physical laws are conservation/balance laws, e.g. mass, charge, energy, momentum
[Bastin, Coron; 2016]
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Networks of hyperbolic systems

Why coupled and interconnected hyperbolic systems?

@ Conservation/balance laws rarely appear isolated

> Navier-Stokes — mass + energy + momentum
> Propagation phenomena rarely occur in a single direction

@ Systems modeled by hyperbolic PDEs do not exist in isolation, e.g.:

» Electric transmission networks — interconnection of individual transmission lines
> Mechanical vibrations in drilling devices — interconnection of different pipes

@ Possible coupling with ODEs

> actuator dynamics (e.g. pump, converter)
> load dynamics (e.g. valve, motor)
> sensor dynamics (e.g. flow-rate sensor, tachometer)
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Examples of interconnected ODE-PDEs-ODE systems

U(t) —

ODE

Hyperbolic PDE

ODE

Applications: drilling systems, deepwater construction vessels [Wang et al.]

> O1p
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Interconnected PDE-ODE systems

@ Interconnections of hyperbolic PDEs and ODEs are not a new problem.

@ Many constructive control results based on the backstepping approach, e.g.:

| 4

v

Seminal paper [Krstic and Smyshlyaev, 2008]: re-interpretation of the classical Finite Spectrum
Assignment [Manitius and Olbrot, 1979] (ODE + input delays)

Time-varying delays [Bekiaris-Liberis and Krstic, 2013, Bresch-Pietri, 2012],

Cascades of PDEs [Auriol et al., 2019]

Cascaded interconnections of hyperbolic PDE-ODE

systems: [Aamo, 2012, Hasan et al., 2016, Zhou and Tang, 2012]
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Interconnected PDE-ODE systems

@ Interconnections of hyperbolic PDEs and ODEs are not a new problem.

@ Many constructive control results based on the backstepping approach, e.g.:
» Seminal paper [Krstic and Smyshlyaev, 2008]: re-interpretation of the classical Finite Spectrum
Assignment [Manitius and Olbrot, 1979] (ODE + input delays)
> Time-varying delays [Bekiaris-Liberis and Krstic, 2013, Bresch-Pietri, 2012],
Cascades of PDEs [Auriol et al., 2019]
> Cascaded interconnections of hyperbolic PDE-ODE
systems: [Aamo, 2012, Hasan et al., 2016, Zhou and Tang, 2012]

v

@ For fully-interconnected (non-cascaded) systems some examples include:

> stabilizing state-feedback control law in [Di Meglio et al., 2018, Wang et al., 2018]
> output regulation for coupled linear wave—ODE systems [Deutscher and Gabriel, 2021]
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Interconnected PDE-ODE systems: control design

@ For ODE-hyperbolic PDE-ODE systems with full interconnections (non-cascade):

>
>

state feedback in [Bou Saba et al., 2017] for scalar PDE system (inverible input matrix)
output-feedback controller based on a Byrnes-Isidori normal form for the proximal ODE, as well
as a relative degree one condition in [Deutscher et al., 2018]

strictly-proper state-feedback control law for scalar PDE in [Bou Saba et al., 2019] requiring
minimum-phase assumption (not relative degree 1)

extended to output-feedback control for scalar PDE in [Wang and Krstic, 2020]

stabilizing observer-controller robust to delays in the case of a scalar proximal ODE

in [Di Meglio et al., 2020]

@ Some recent results have also been obtained for interconnected PDE systems with
non-linear ODEs [Irscheid et al., 2021]
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Content of the presentation

What you will see in this presentation

@ Output regulation of a general class of ODE-PDE-ODE system
» Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
> Backstepping approach: integral change of coordinates
» Time delay representation and frequency analysis
» Stabilizing control law in the absence of the disturbance
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What you will see in this presentation

@ Output regulation of a general class of ODE-PDE-ODE system
» Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
> Backstepping approach: integral change of coordinates
» Time delay representation and frequency analysis
» Stabilizing control law in the absence of the disturbance

@ A robustification procedure

> Low-pass filter to make the control law strictly proper
> Frequency analysis

@ Observer design
> Backstepping approach to simplify the dynamics
> Luenberger-like observer with tuning operators
> Frequency analysis
> Output-feedback control law
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System under consideration: ODE-PDE-ODE

X(t) = AoX(t) + Eov(t,0) + BxU(t),

Aru(t, x) + AToxu(t,x) = T (x)u(t, x) + T (x)v(t, x),
Orv(t,x) — A= 9xv(t,x) = T (x)u(t, x) + T~ (x)v(t,x),
u(t,0) = CoX(t )+Qv( ,0), v(t,1)=Ru(t,1)+ CiY(t),
Y(t) = A Y (1) + Eyu(t 1),

C0 u(tﬂx) E1
- : x >
X = AoX + Eov(1,0) o +I o V=AY Er ()
—+1 - R =AY + Equ(t,
+BxU(f) pu : > : 1 1
1

-« 3 '
Ep v(t,x) Cq

t t X
0 1

@ Measurement: y(t) = Cmes Y(1)
@ Same concepts for scalar and non-scalar PDEs systems
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9/37



System under consideration: ODE-PDE-ODE

X(t) = AoX(t) + Eov(t,0) + Bx U(t),

Otu(t, x) + X oxu(t,x) = o T (x)u(t,x) + o7 (x)u(t, x),
v (t,x) —udxv(t,x) = o~ T (x)u(t,x)+ 0 (x)v(t,x),

u(t,0) = CoX(t)+qv(t,0), v(t,1)=pu(t,1)+CiY(1),
Y(t) = A1 Y(t) + Equ(t, 1),

C0 u(tﬂx) E;
e , x -
. 1
X:A()X-‘rEQV(l‘,O) 1 : .
q —+1 st p Y=A1Y+ Eu(t1
+BxU(f) o : o : 1 1 ( )
1
-« 3 '
Eo v(t,x) C;
} } X
0 1

@ Measurement: y(t) = Cmes Y(1)

@ Same concepts for scalar and non-scalar PDEs systems

@ Diagonal terms can be removed with exp. change of coordinates

@ Initial conditions in H! with appropriate compatibility conditions — well-posedness

9/37



System under consideration: ODE-PDE-ODE

X(t) = AoX(t) + Eov(t,0) + Bx U(t),

Otu(t, x) + X oxu(t,x) = o T (x)u(t,x) + o7 (x)u(t, x),
v (t,x) —udxv(t,x) = o~ T (x)u(t,x)+ 0 (x)v(t,x),
u(t,0) = CoX(t)+qv(t,0), v(t,1)=pu(t,1)+CiY(1),

Co u(t, )
—> ; x
. 1
X:AOX+Eov(t,0) 1 !
9 ot ot Y
+Bxu(f) : |
1
e * 1
Eo V(t,X)
} i X
0 1
Measurement: y(t) = Cmes Y(1)

Same concepts for scalar and non-scalar PDEs systems

Diagonal terms can be removed with exp. change of coordinates

Initial conditions in H! with appropriate compatibility conditions — well-posedness
Stabilization in the sense of the L2-norm
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System under consideration: well-posedness and stabilization objective

X(t) = AoX(t) + Egv(t,0) + Bx U(t),

dru(t, x) + X dxu(t,x) = 6 (x)u(t, x),

Opv(t,x) —uoxv(t,x) = o T (x)u(t,x),

u(t,0) = CoX(t)+qv(t,0), v(t,1)=pu(t,1)+CiY(1),

Well-posedness in open-loop

For every initial condition (Xp, to, Vo, Yo) € RP x H'([0,1],R?) x RY that verifies the compatibility
conditions

up(0) = CoX(t)+ Qvo(0), wo(1) = Rup(1)+ C1Y(t)

there exists one and one only (X, u, v, Y) which is a solution to the open-loop Cauchy
problem (i.e., U= 0).

Moreover, there exists ko > 0 such that for every (Xp, tp, vo, Yo) € RP x H'([0,1],R?) x R9
satisfying the compatibility conditions, the unique solution verifies

H(X(I),U(t,'), V(tv')v Y(t))HX < KoeKotH(Xo,Uo, Vo, YO)HXv Vte [ano)'

where [[(X(t), u(t,-), v(t,-), Y(D))llx = \/IIX(t)Hﬁp A+ lut )IZ2 + vt )1E: + Y (][R
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System under consideration: well-posedness and stabilization objective

X(t) = AogX(t) + Egv(t,0) + Bx U(t),

dru(t,x) + A dxu(t,x) = o (x)u(t, x),

9v(t,x) —uoxv(t,x) = o T(x)u(t,x),

u(t,0) = CoX(t)+qv(t,0), v(t,1)=pu(t,1)+CiY(1),

Stabilization objective

Design a continuous control input that exponentially stabilizes the system in the sense of the
L2-norm, i.e. there exist kg and v > 0 such that for any initial condition
(X0, o, vo, Yo) € RP x H'([0,1],R?) x RY, we have

||(X(t)7u(t7')7 V(t,')v Y(t))HX < K067Vt|‘(X07u07 Vo, YO)HX7 0<t
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Output-regulation problem

Augmented variable:  Y(t) = (v, (1), YZT(t))T

CO U(T,X)
» N ?

. 1
X = Ao X+ Epv(t,0 !
oX + Eov(t,0) 67+: G+7:
+BxU(t) ! .
1
P ¥ 1
EO V(t,X)

@ Y; is the "real" ODE state

Y A1Y\<

\%‘)u(m)

@ Y is an exogenous input: disturbance Yjst and/or a reference trajectory Yyqo¢

Y(t) =AY () + (0;1) u(t, 1), with Ay = <

At1 A12)
Ogoxq, A22)’
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Output-regulation problem

CO U(f,X) EW
— . x
. !
X:AOX+Eov(t,0) 1 : . E;
q -+ st p Y=A Y+< u(t,1
+BxU(1) °c oo ‘ o) (t:1)
1
-« ¥ L -
Eo v(t,x) C
t t X
0 1

Augmented variable:  Y(t) = (Y (¢), YZT(t))T
@ Yj is the "real" ODE state
@ Y is an exogenous input: disturbance Yjst and/or a reference trajectory Yyqo¢

At A12
Ogoxq, A22)’

Y(t) =AY () + (OqEL) u(t,1), with A = (
Virtual output: (1) = CeY(t) = (Ce1  Cez) Y(1)

Control objective J

Design a control law U(t) s.t. the virtual output £(t) exp. converges to zero.
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Output-regulation problem

CO u(tfx)
# T T
. !
X:AOX+EOV(t.0) 1 !
g ot oot P
+BxU(t) : |
1
-« ¥ 1
Eo v(t,x)
} } X
0 1

Augmented variable:  Y(t) = (Y (¢), YZT(t))T
@ Y is the "real" ODE state
@ Y> is an exogenous input: disturbance Yt and/or a reference trajectory Yyqf

. E; . A A
Y(t)=A1Y(t)+ u(t,1), with Ay = ,
(O =av(0)+ (o5 Juter).wima = (A 42)

Q2 X OQ2 X

Virtual output: (1) = CeY(t) = (Ce1  Cez) Y(1)
@ Output regulation problem: Cg1 # 0, and Ce2 = 0: we want to regulate to zero a linear
combination of components of Y;(t) in the presence of a disturbance Ya(t).
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Output-regulation problem

Co u(t, x)
— T ¢
. 1
X = ApX+ Egv(t,0 1 !
(t.0) g o+ ot P
+Bxu(f) : 1
1
- ¥ 1
Ey v(t,x)
t t X
0 1

Augmented variable:  Y(t) = (Y| (1), Y2T(t))T

@ Y is the "real" ODE state
@ Y is an exogenous input: disturbance Yjs; and/or a reference trajectory Yyqo¢

Y(t) = A Y(t)+( E 1) u(t,1), with Ay = ( At A‘2>,

0g, x Ogxg A22

Virtual output:  &(t) = CeY(t) = (Cer  Cez) Y(1)
@ Output tracking problem: Ce,j — Ce2 j = 0, (other components = 0): we want the jth
component of the output Y; to converge towards the /1" component of a known

trajectory Ya.
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Structural assumptions

CO u(t?X) ET
# T ¢
. 1
X:AOX+EOV(l‘,0) 1 : . 'E
qa o t' ot p Y =AY ‘) 1
+ByU(1) c :6 ! 1 +<O u(t,1)
1
-« ¥ L -«
EO V(t7X) CT
} } X
0 1

Assumption 1: Stabilizability

The pairs (Ao, Bp) and (Aq1, Eq) are stabilizable, i.e. there exist Fp € R™P, F1 € R™ % such
that Ag = Ap + Bx Fp and A1y = A1 + E1 Fy are Hurwitz.

@ Classical requirement found in most of the papers dealing with ODE-PDE-ODE
@ Not overly conservative (necessary to stabilize Y, slightly conservative for X).
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Structural assumptions

CO U(f,X) Eq
- T x ->
. !
X:AOX+EOV(l‘,0) 1 : . E;
' a ot ot~ P Y=AY+ u(t,1
B U(t) c : ot 1 <0> (t,1)
1
* L e
EO V(t,X) C
i } X
0 1

Assumption 2
For all s € Co, the matrices (Ao, Bx, Co) satisfy

sld—Ap Bx
rank = 1= n.
< Co Onxr) P+ Pt

@ The function Py(s) = Co(sld — Ag) ™" Bx does not have any zeros in C*
@ Stable right inverse of Py(s)
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Structural assumptions

p Y A1Y)<

1

E)u(m)

C0 U(f,X) EW

- , x
. !

X:AOX+EOV(f,0) 1 !
9 ot ot
+BxU(t) : 1
!

- + ' —

Eo V(t,X) C

t t X

0 1

Assumption 3: Delay-robustness
The coefficients p and q verifiy |pg| < 1.

@ No asymptotic chain of eigenvalues with non-negative real parts

@ Necessary for (delay-) robust stabilization
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Structural assumptions

p 'Y7A1Y+<I:;>u(z‘.1)

Co U(f,X) E;

—> : x =
X = AoX + Eov(t,0) I !
9 ot ot
+BxU(t) ! '
1

-« 2 L -«

EO V(t,X) CW

t } X

0 1

Assumption 4: detectability

The pairs (A, C), (Ao, Co) are detectable (i.e. there exist Ly € RP*" and L1 € R7%9 such that

A1 = Aq + L1 Cmes and Ay = Ag + Lo Cy are Hurwitz).

@ Classical requirement found in most of the papers dealing with ODE-PDE-ODE

@ Not overly conservative (necessary for reconstruction of Xy, slightly conservative for Y).
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Structural assumptions

C0 u(t?X) E;
# T ¢
. !
X:AOX+EOV(l‘,0) 1 : . E;
q —t1 ot p Y=A1Y t,1
+BxU(t) ° o ! +<O>U( )
1
-« X L -«
EO V(t7X) Cy
+ + X
0 1

Assumption 5
For all s € CT, the matrices (A1, Eq, C) satisfy

ld—A; E
rank((s i ()‘)):q+1:q+n. )

Cm es

@ Necessary to independently reconstruct the different PDE boundary values by inverting the
Y dynamics.

@ The function P;(s) = Cpes(sld — A;) ™! Eydoes not have any zeros in C*

@ Stable left-inverse of P;(s)
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Structural assumptions

Co U(f,X)
- ; x
. 1
X = Ap X+ Egv(t,0 1 !
(0 g ot oot P
—‘y—BxU(t) : 1
1
-« ¥ L
Eo v(t,x)
t t X
0 1

Assumption 6
The matrix Agz is marginally stable, i.e., all its eigenvalues have zero real parts. There exist
matrices T, € R%*% F, € R"*% golutions to the regulator equations:

—A11Ta+ TaA2 + A = —E1 F,
—Ce1 Ta+ Ce2 =0.

@ Non-resonance condition.

@ Aiq and Az have disjoint spectra, and the number of outputs we regulate is coherent with
the number of inputs.

@ The matrices T,, F; can be computed using a Schur triangulation.
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Control design: strategy.

@ Backstepping transformation to simplify the dynamics and the design of the control law.
@ The regulation problem rewrites as a stabilization problem.
@ Time-delay representation and frequency analysis.

@ Low-pass filtering of the control law to make it strictly proper.
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Backstepping methodology

@ Map the original system to a target system for which the stability analysis is easier.
@ Variable change: integral transformation, classically Volterra transform of the second kind

a(t.) = u(t. )~ [ KX EU(L.E) + K™ (x EJ(LE)E,
Btx) = W(t.x) = [ K™ (.E)U(L.E) + K™ (x E(LE)CE,

X
Condensed form:  y(t,x) = w(t,x)—/ K(x,y)w(t,y)dy.
0

w(0,x) T ¥(0,%)
eﬂoLf e/’zldt
w(t,x) . v(t,x)
=

Limitations
@ Choice of an adequate target system.
@ Proof of existence and invertibility of an adequate backstepping transform.

14/37



Objective: Move the in-domain coupling terms at the actuated boundary.

ur(t,x) 4+ Aux (t,x) = ot v(t, x),
ve(t, x) —uv(t,x) = o u(t, x).

U(t) — .U(M)*
G 6, ot E >P

¥ .

v(t,x)
9 1 X

u(t,0) = qv(t,0) + U(t)
v(t,1) =pu(t,1)

15/37



Objective: Move the in-domain coupling terms at the actuated boundary.
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u(t,0) = qv(t,0) + U(t)
v(t,1) =pu(t,1)

15/37
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ve(t,x) — pvy(t, x) = 6~ u(t, x). Be(t,x) —uPx(t,x) = 0.
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Objective: Move the in-domain coupling terms at the actuated boundary.

ur(t,x) 4+ Aux (t,x) = ot v(t, x),
ve(t, x) —uv(t,x) = o u(t, x).

t,
u(t) — G
<7' o, ot : >P
v :
v(t,x)
0 1 X
u(t,0) = qv(t,0)+ U(t)
v(t,1) = pu(t,1)
Natural control law

U(t) = —gB(t,0) + fy (N*(E)ex(t,&) + NP(

o (t,x) + Ao (t, x) =0,
Be(t, x) — uPx(t,x) =0.

Uty — o1, x)
¢ )
B(t,x)
(u) ‘Il X
a(t,0) = gB(t,0)+ U(1)
) V/O‘W NE(E)au(t,E) + NP(E)B(t,E)dE.
B(t,1) = po(t, 1)
B(1.8)) d& J
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Backstepping: Volterra transformation

X =50+ [ ME)alty) + MBI+ M M),
)= altx) + [ Wy )aly) + M BNy + (M) 06 ()

1
v(t,x) = B(”H,/X M3 (x,y)oy) + M (x,y)B(y)dy + [M*(x)  M*3(x)]n(t),
Y(t) =n(1).

@ Triangular transformation: invertible.

X(1) ld - fy M(y)dy Jo M3(y)dy (M M"°]
(W-X)) _ (0 ld+ [} M2(x,y)dy [y MBE(xy)dy  [MP(x) M25(X)]) ( X;)
n(r)

vitx) ] | o JeM2(x,y)dy  ld+ [IME(xy)dy  [MP4(x) M (x)]
Y(¢) 0 0 0 Id

@ Kernels are bounded functions.

@ Unique solution due to the rank condition on Cp.
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Backstepping: Target system

Original system:

CO U(t,X) E4
- ; x
. 1
X =AoX+ EoV(l‘,O) 1 : . E;
q T oot p Y =AY t,1
1By U(1) ° o 1 +<0>U( )
1
« . : -«
EO V(t,X) 01
} —> X
0 1
Target system:
Co a(t7x) Eq
- >
€ = Aok + EoP(t,0)+ o E,
q p =AM+ ot 1
Ot ) + BxU(1) A=A () ste)
<« \ €
EO B(t,X)

17/37



Backstepping: Target system

Original system:

X(t) = AoX (1) + Eov(t,0) + Bx U(1),

Oru(t, x) + AT oxu(t,x) = o7~ (x)u(t, x),

Av(t,x) — AN~ axv(t,x) = o~ T (x)u(t, x),

u(t,0) = CoX(t)+qv(t,0), v(t,1)=pu(t,1)+CiY(1),

Target system:

&(t) = Ao(t) + Erai(t, 1) + Eo(t,0) + Mn(1)
+ Jo Ma(y)a(t,y) + Mg(y)B(t,y)dy + BxU(1),
910t x) + ATaya(t,x) =0,
9:B(t,x) — A~ 9xB(t,x) =0,
Ot(t,O) = Cog(t)+qﬁ(t70)7 B(t71) = POL(U%

Ao = Ao+ BxFo, Ay = <A” +ERA ArtE(Fat A ra)>

() /422
Advantages of the target system:

@ Simplified in-domain couplings.

@ Almost a "cascade structure"

@ To stabilize the whole system, we can focus on the stabilization of &.
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A cascade structure

&(t) = Ao(t) + Eqau(t, 1) + EoP(t,0) + Mn(1)

+ Jo Ma(y)a(t,y) + My(y)B(t,y)dy + BxU(1),
arau(t, x) + AToya(t,x) =0,
8,[3(t,x)—A‘8XB(t,x):O,
OC(T,O):Cog(t)—FqB(t,O), B(t71):pa(tv1)7
N() =Am(t)+ (&1 0) a(t,1),

Stability and regulation
If Co& exp. converges to zero, then g(t) — 0. Furthermore, the trajectories are bounded. J
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A cascade structure

Assumption 6
The matrix Az is marginally stable, i.e., all its eigenvalues have zero real parts. There exist
matrices T, € R%*% F, € R"*% gsolutions to the regulator equations:

—A11Ta+ TaA2 + A = —Eq F,
—Ce1Ta+ Ceo = 0.

Stability and regulation

If & exp. converges to zero, then €(t) — 0. Furthermore, the trajectories are bounded.

Proof: If Co& converges to zero, then so does ||(ct, B)||2-
@ We have

Y1 = (A1 + E1F1) Yi(t) + (A2 + E1(Fa+ F1 Ta)) Yo (t) + Erou(t,1)
= (A11 + E4 F1)Y1 (l’) +(A11 Ta—E1F3— TaAgg)Yg(t) + E4 (Fa+ Fq Ta)Yg(t)+ E4 O(,(t,1),

—0

—_—~ _ —_——
=(Y1 4 TaY2)(t) = A1 (Y1 + TaYo) + Era(t,1).
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A cascade structure

Assumption 6
The matrix Az is marginally stable, i.e., all its eigenvalues have zero real parts. There exist
matrices T, € R%*% F, € R"*% gsolutions to the regulator equations:

—A11Ta+ TaA2 + A = —Eq F,
—Ce1Ta+ Ceo = 0.

Stability and regulation

If & exp. converges to zero, then €(t) — 0. Furthermore, the trajectories are bounded.

Proof: If Co& converges to zero, then so does ||(ct, B)||2-
@ We have
Y1 = (A1 + E1F1) Yi(t) + (A2 + E1 (Fa+ F1 T2)) Ya(t) + Ero(t, 1)
= (A11 + Eq Fq )Y1 (l’) +(A11 Ta—E1F3— TaAgz)Yg(t) + E4 (Fa+ Fq Ta)Yg(t)—I— E4 (X,(t,1),
—0
—_—~ _ —_——
=(Y1+TaY2)(t) = A1 (Y1 + TaYe) + Erot,1).
@ Y1+ T,Ys exp. stable = Ce( Yy + TaY2)(t) = Cet Y1(t) + Ce2 Yao(t) = €(t) goes to zero.

@ Invertibility + boundedness of the backstepping transf. implies boundedness of the state.
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Time-delay representation

ot (£,X) + Aoy (£, X) =0
Be(t, x) —uPx(t,x) =0

a(t,0) = gP(t,0) + Co&(t)
B(tv 1) = pa(tv 1)
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Time-delay representation

o(t, x) + Ao (t, x) =0 — Transport equation
Be(t, x) — uPx(t, x) =0 — Transport equation

O((t,O) = qB(f,O) + COé(t)
B(tv 1) = pOC(f, 1)
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Time-delay representation

o(t, x) + Ao (t, x) =0 — Transport equation
Be(t, x) — uPx(t, x) =0 — Transport equation

O((t,O) = qB(f,O) + COé(t)
B(tv 1) = pOC(t, 1)

Method of characteristics:

(1=x) 1
,X’O)

oft,x) = ot — %,o), B(t,x) = pat —

Difference Equation satisfied by o(t,0)

o(t,0) = pgo(t —7,0) + o), > %+% _1

Using the Laplace transform: (1 —pge~")a(s,0) = Co&(s)

We can kill the o and [3 terms to obtain &-terms!
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Time-delay representation

A(t) = Am(t) + (€ 0) " a(t,1)
E(1) = A&(t) + Eyau(t, 1) + EoB(t,0) + M (1) + fo Ma(y)ai(t,y) + Mg(y)B(t,y)dy + Bx U(1).

Laplace transform on mj

1]1(8) = (sld—211)_1(;\12ng(s)+E1e_§(x(s,0)) J

We can get rid of the n1-terms!
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Laplace transform on m4

M1 () = (sld — A11) " (A12n2(s) + Ere 7 as,0))

We can get rid of the n1-terms!

Laplace transform on &

(sld — Ag)E(s) = G(s) Co&(s) + H(s)nz(s) + Bx U(s),

Py = Co(sld — Ag) ™" Bx admits a stable right inverse Par.

Co(s) = Co(sld — Ag) ™" G(s) Co&(s) + Co(sld — Ag) ™" H(s)M2(s) + Po(s)U(s),
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Time-delay representation

W) =Am(t)+ (& 0) ot 1)

E(t) = Aok(t) + Eqau(t, 1) + EoB(t,0) + Mn(t) + fy Ma(y)ai(t,y) + Mp(y)B(t, y)dy + Bx U(t).

Laplace transform on 14

M1(s) = (sld — A1)~ (Arona(s) + Ere T a(s,0))

We can get rid of the n1-terms!

Laplace transform on &

(sld — Ag)E(s) = G(s) Co&(s) + H(s)nz(s) + Bx U(s),

Py = Co(sld — Ag) ™" Bx admits a stable right inverse Par.
Co(s) = Co(sld — Ag) ™" G(s) Co&(s) + Co(sld — Ag) ™" H(s)M2(s) + Po(s)U(s),
Stabilizing control law

U(s) = — Py (s)Co(sld — Ag) " G(s)Cok(s) — Py (s)Co(sld—Ag) " H(s)n2(s)

stabilization disturbance rejection or tracking
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A non strictly proper control law

Stabilizing control law

U(s) = — Py (s)Co(sld — Ag) " G(s)Cok(s) — Py (s)Co(sld—Ag) "H(s)n2(s)

stabilization disturbance rejection or tracking
= Fe(s)&(s) + Fa(s)na(s)

@ The control law ay not be strictly proper due to P(T(s) — Robustness issues.
@ We can make F(s) strictly proper using our prior knowledge of the dynamics.

@ We can make F¢(s) strictly proper using a low-pass filter.
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Filtering of the control input

Fe(s) = —Py (s)Co(sld— Ag) "' G(s)Co,  Fn(s) = —Py (s)Co(sld— Ag) " H(s)
Filtered control law
Let w(s) be any low-pass filter, with a sufficiently high relative degree, and 0 < & < 1 such that

1—9
< =
< TGT-5(Colria—20) )’

then U(s) = w(s)Fz(s)E(s) + Fq(s)n2(s) stabilizes Co&(s)

Vx €R, [1 —w(jx)

Proof: Let d(s) = (1 — w(s))Co(sld — Ag) ' G(s).
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Filtering of the control input

Fe(s) = —Py (s)Co(sld— Ag) "' G(s)Co,  Fn(s) = —Py (s)Co(sld— Ag) " H(s)
Filtered control law
Let w(s) be any low-pass filter, with a sufficiently high relative degree, and 0 < & < 1 such that

1—9
< =
< TGT-5(Colria—20) )’

then U(s) = w(s)Fz(s)E(s) + Fq(s)n2(s) stabilizes Co&(s)

Vx €R, [1 —w(jx)

Proof: Let d(s) = (1 — w(s))Co(sld — Ag) ' G(s).
@ & is stable and strictly proper
@ G(s) is unif. bounded, we have 6(G(jx)) < || G| for all x
@ We have 6(0(jx)) <1-38=||P]| < 1

@ Characteristic equation (1 — ®(s))Co&(s) = 0 — exponential stability

Strictly proper stabilizing control law!
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Summary state-feedback

@ Backstepping transformation to simplify the dynamics and the design of the control law.
@ The regulation problem rewrites as a stabilization problem.
@ Time-delay representation and frequency analysis.

@ Low-pass filtering of the control law to make it strictly proper.
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Observer design

X(t) = AoX(t) + Eov(t,0) + BxU(t),

Aru(t,x) +AToxu(t,x) = T (X)u(t,x) + = (x)v(t, x),
Arv(t,x) — A" dxv(t,x) =X~ T (x)u(t,x) + X~ (x)v(t,x),
u(t,0) = CoX(t)+Qv(t,0), v(t,1)=Ru(t,1)+C1Y(1),
Y(f) = A1 Y(T)+ E4 U(f.1).

¥y = CmesY(t), dim(y)>dim(u)

Co u(t,x) Ey
- T X ->
R 1
X = ApX + Egv(t,0 ' :
0 0(/ ) Q Z_+: z+_: R YfAWY}E1U(l‘.1)
+Bx U(t) : !
1
-« 3 : <
Eo v(t,x) C;
+ = x
0 1

Problem statement
Design a state observer for the system based on the available measurement y(t). J
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Methodology

@ Backstepping transformation to simplify the dynamics and the design of the observer.
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Methodology

@ Backstepping transformation to simplify the dynamics and the design of the observer.
@ Luenberger-like observer with operators O; that need to be tuned.
@ Design of the operators O; to guarantee the exponential stability of the error system

@ Convergence of the observer state to the real state.
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Backstepping: Target system

Original system:

(1)
Tcmes

Y =AY+ Eu(t,1)

y(1)
Tcmes

Y1 = A Y+E1OL(Z‘.1)

CO U(t,X)
:
. 1
X = Ao X+ Eov(t,0) Q Tt y¥t
+BxU(t 1
x U(t) !
Eo v(t, x)
0
Target system
1afyet systern Gs
Gz
| Co+ I (t, )
A
1
. ” 1
&= A+ Gsout,1) Q R
+GyY + BxU(t) I
Y
B(t,x)




Backstepping: Target system

Target system

Gy
Gs (1)
l Co+ I olt, x) E; Tcmes
x —
1 1
. - ! .
&= AoE+ Gsa(t,1) Q bommemm 'R Yy =AY+ Eja(t,1)
+GaY + BxU(t) \
< ¥
B(t.x)
} X
0 1

E(t) = Aok(t) + Gaou(t, 1) + G Y (1) + BxU(t),

a(1,0) = G(1,0) + Go5(1) + (@1 (0) WO ¥ (1) + [ F ()t + PP BCE. oy
o (t, x) + AT oy (t,x) = Gy (x)a(t, 1),

Br(t.x) = A" Bx(t,x) = Ga(x)au(t, 1),

B(t,1) = Ra(t, 1), Y(t) = A1 Y(t) + Eqa(t, 1).

F% strictly lower triangular
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Backstepping: Target system

Target system

Ga
Gs y(t)
l Co+ I OC(l‘,X) E; Tcmes
7y _
1 1
. 1 .
& = Aok + Gyou(t,1) Q PR gl | Vi =AY+ Eat 1)
+GaY + BxU(t) I
Y
B(t,x)
t —> X
0 1

Advantages of the target system:
@ Simplified in-domain couplings.
@ Almost a "cascade structure" (except for the o(t,1)-terms);
@ Simplified observer design
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Backstepping: Volterra transformation

X =50 [ L)) + LB,
1 1
u(t.) = altx) ~ [ 1 (xp)ay)oy - [ LB (xpBO)EY -+ 100 YO,

v(t,x) =B(t,x)— /X 1 LP(x, y)a(y)dy — /X 1 LPB(x,y)B(y)ay +vp(x) Y (1),
Y(t) = ¥(1),

@ Triangular transformation: invertible.

@ Kernels are bounded functions.
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Observer equations

System (€, B, Y)
E(t) = Aok(t) + Gaau(t, 1)+ G4 Y(t) + Bx U(t),
a(1,0) = GB(1,0) + Go5 () + (@1p(0) V(N ¥ (1) + [ F()u(t) + FPBLE oy,
ar(t,x) + AT o (t,x) = Gi (x)at, 1),

Be(t,x) — A~ Bx(t,x) = Ga(x)ai(t, 1),
B(t,1) = Ra(t, 1), Y(t) = A Y(t)+ Eqa(t,1).

System (€,6.,B,¥): O, : stable operators.
£(1) = Ak() + Gabu(1. 1) + Ga ¥(1) — 0o (7).
6(t,0) = @B(t,0) + Cob (1) + (Qp(0) — ¥(0)) V(1)
+ [ F Wty + POBE Y - o),
af(rx)+A+ocx<rx) G1(x)8(1,1) = Ou(x,7),
Be(t,x) = A~ Bx(t,x) = Ga(x)&(t, 1) — Op(x.7),
B(t,1) = Ro(t,1), V(t) = AsY(t)+ E16(t,1) — L1 CY,
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Error system

E(1) = Aof(1) + Gadi(t, 1) + Ga ¥(¢) + BxU(1) (7).
&(1,0) = Co&(1) + @B(t,0) + (Qy(0) —¥(0)) ¥(1)
+ [ F W) + OB+ o),
A (t, x) + AT (t,x) = Gy (x)&(t,1) + Ou(x,7)
Be(t,x) — A~ Bx(t,x) = Ga(x)&(t,1) + Op(x,7)
B(t1) = Ra(t,1), V(1) = A V() + Ea(t1).

@ Obijective: Tune the gains O; such that the error system exponentially converges to zero.

Lemma: Cascade structure of the error system

If g(t), @(t,1) and Y(t) exponentially converge to zero, then the state (E,d, [NS, ¥) exponentially
converges to zero. This implies the convergence of the observer state to the real state.
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Design of the operators O;

@ Laplace transform of V(t) =AY(t)+E6(t,1):

(S|d — A1 ) V(S) = E d(s, 1) — ;’(S) = Cmes(3|d - /2\1 )71 Eq 6((8, 1 ) )

where Ay is Hurwitz (Assumption 4) and Cmes(sld — A{)~"Ey has no zeros in the RHP
(Assumption 2)

31/37



Design of the operators O;

@ Laplace transform of V(t) =AY(t)+E6(t,1):

(S|d — A1 ) V(S) = E d(s, 1) — ;’(S) = Cmes(3|d - /2\1 )71 Eq 6((8, 1 ) )
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@ Py(s) = Cmes(sld— A;)~"Ey has a stable left-inverse (Assumption 4):

6(s,1) = Py (s)3(s).  ¥(s) = (sld—Ar) ' 1Py ()3(s)

Terms that are functions ¥ and (s, 1) can be (exponentially) compensated using stable
filters and values of j(s).
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Design of the operators O;

@ Laplace transform of V(t) =AY(t)+E6(t,1):

(S|d — A1 ) V(S) = E d(s, 1) — ;’(S) = Cmes(3|d - /2\1 )71 Eq 6((8, 1 ) )

where Ay is Hurwitz (Assumption 4) and Cmes(sld — A{)~"Ey has no zeros in the RHP
(Assumption 2)

@ Py(s) = Cmes(sld— A;)~"Ey has a stable left-inverse (Assumption 4):

6(s,1) = Py (s)3(s).  ¥(s) = (sld—Ar) ' 1Py ()3(s)

Terms that are functions ¥ and (s, 1) can be (exponentially) compensated using stable
filters and values of j(s).
o We have &(t) = Ao€(t) + Gadi(t,1) + Ga ¥ (1) + Oo(7)
Oo(7(s)) = —(GaPy (s)+ Ga(sld— Ar) " Ey Py (s))7(s) = (sld — Ag)§(s) = 0

Exponential convergence of E to 0.
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Design of the operators O;

a(s,1) =P, (s)Y(s), J(s)=(sld—A) "EiP; (s)7(s)

@ We have @;(t,x) + At (t,x) = Gi(x)6(t,1) + Ox(x, 7). Thus

Ou(%,7) = —G1(x)P; (8)7(8) = @y(t,x) + A b (t,x) = 0 = | (1. x) = B;(t — %,o) .

i
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Design of the operators O;

a(s,1) =P, (s)Y(s), J(s)=(sld—A) "EiP; (s)7(s)

@ We have @;(t,x) + At (t,x) = Gi(x)6(t,1) + Ox(x, 7). Thus

Ou(%,7) = —G1(x)P; (8)7(8) = @y(t,x) + A b (t,x) = 0 = | (1. x) = B;(t — %,o) .

i

® We have Br(t,x) — A~ Bx(t,x) = Go(x)&(t,1) + Og(x,¥)- Thus

Op(x.9) = —Ga(x)Py (8)7(5) = Be(t.x) = A~ Bu(t,x) =0

1—x
_ 1

= Bj(f,X):ki1 Rjkdk(l‘f ) X

Hj
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An Integral Difference Equation

@ The function &(t,0) verifies

8i(5.0) = ((Q¥5(0) —1a(0)) V)i + (01 (7)) f Y QuRe 7 6y(s,0)
k=1{—1

s(1-v)

m n B
+/ ZZ i (V)Rkee™ e Gy(s,1)dv

sv

m n
+/0 YR Y Y Qe e (s, 1)dv
j=t k=1/(=1

since F* is strictly lower-triangular.
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An Integral Difference Equation

@ The function &(t,0) verifies

m n s s .
(5.0) = (A1 (0) V() V) + (01 7)i+ X Y. Quae™He(5.0)
k=1/¢=A
m n B s(1-v)
+/ Z Z k Rk(e Hk (X,((S 1)
- m n _sv s
+/ ZF,;?‘(v) Y Y QuRie Ne mdy(s,1)av
0 =1 k=1(=1

since F* is strictly lower-triangular.

@ Possible to recursively define O (¥) such that

" 1 1
Y. QuRied(t — — — 5-,0)
/=1 Hk ?\'[

[\’]3

k
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An Integral Difference Equation

@ The function &(t,0) verifies

8i(5.0) = ((Q¥5(0) —1a(0)) V)i + (01 (7)) f Y QuRe 7 6y(s,0)
k=1{—1

1m n s(1-v)

+ [ Y Y V)R o dy(s.1)av
0 k=1/=1
1 i m n s s
+/ Y FrV) Y Y QuRwe fe i dy(s,1)dv
j=1 k=1{=1

since F* is strictly lower-triangular.

@ Possible to recursively define O (¥) such that

" 1 1
Z Qi Rice O ( t= =5 0)
= Mk A

HME

@ Exponential stabilization of &(t,0) (and consequently of &(¢,1)) due to Assumption 3.
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Convergence of the observer

@ The states @(t,1) and E exponentially converge to zero.

@ We have Y(t) = A Y(t) + E16(t,1) with Ay Hurwitz. Thus the state ¥ exponentially
converges to zero.

@ Stabilization of the error system.

Convergence of the observer

With the proposed operators Op, Og., O, O+, the observer state (X, 0,7, V) = T 6.p,7)
exponentially converges to (X, u, v, Y), 7 being the inverse backstepping transformation.
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@ We have Y(t) = A Y(t) + E16(t,1) with Ay Hurwitz. Thus the state ¥ exponentially
converges to zero.

@ Stabilization of the error system.

Convergence of the observer

With the proposed operators Op, Og., O, O+, the observer state (X, 0,7, V) = T 6.p,7)
exponentially converges to (X, u, v, Y), 7 being the inverse backstepping transformation.

@ Possible to low-pass filter the measured output signal to use strictly proper observer
operators

@ The proposed observer could be combined with the previous state-feedback laws to obtain
a strictly proper output-feedback controller.
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Simulation results

Parameters:

A=2,u=07,6""=1,6T=05p=05g=1.2
ODE dynamics in dimensionn=4,m=3,c =2
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Unstable system in open-loop.
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Simulation results
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Figure: Evolution of the distal ODE state Y;(t) (blue) in the presence of a disturbance Ygist
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Simulation results
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Figure: Evolution of the control inputs U (t) (blue) and Ux(t) (red)
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Simulation results

v (t,x)

Time [s]

Figure: Evolution of the PDE state v(t, x)
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Simulation results
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Figure: Evolution of the norm of the error state
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Conclusions and perspectives

@ Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking

> Backstepping transformation to simplify the structure of the system
> Frequency analysis to design the control law
> Filtering techniques to guarantee robustness
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Conclusions and perspectives

@ Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking

> Backstepping transformation to simplify the structure of the system
> Frequency analysis to design the control law
> Filtering techniques to guarantee robustness

@ Luenberger-like observer for the ODE-PDE-ODE system

> Backstepping transformation and frequency analysis approach for the error system.
> Output-feedback control law.
» Computational effort?

@ Perspectives?

> Model reduction?
> Leverage the different assumptions?
> Structure of the interconnection?
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