Output Regulation for a class of linear ODE-Hyperbolic PDE-ODE systems

Jean Auriol Joint work with J. Redaud and F. Bribiesca-Argomedo

L2S, CNRS, Université Paris-Saclay, UMR 8506

November 8, 2023

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
 - Iong distances (e.g. pipeline)
 - slow propagation speeds (e.g. traffic)
 - spatially dependent characteristics (e.g. composite materials)
 - anisotropic behavior (e.g. ferromagnetism)

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
 - long distances (e.g. pipeline)
 - slow propagation speeds (e.g. traffic)
 - spatially dependent characteristics (e.g. composite materials)
 - anisotropic behavior (e.g. ferromagnetism)
- Multiple problems: stabilization, control, observability, parameter estimation...
 - Wave equation: $\partial_{tt}w(t,x) c^2 \partial_{xx}w(t,x) = 0.$

Why hyperbolic systems?

- Conservation/balance of scalar quantities when taking into account:
 - Evolution (e.g., transport) of conserved quantities in space and time
 - Finite speed of propagation (vs. heat equation)
- Natural representation for some industrial processes for which you have
 - Iong distances (e.g. pipeline)
 - slow propagation speeds (e.g. traffic)
 - spatially dependent characteristics (e.g. composite materials)
 - anisotropic behavior (e.g. ferromagnetism)
- Multiple problems: stabilization, control, observability, parameter estimation...
 - Wave equation: $\partial_{tt}w(t,x) c^2 \partial_{xx}w(t,x) = 0.$

Mathematically, this may look something like:

$$\partial_t \rho(t,x) = \nabla f(t,x) + S(t,x), \quad \forall (t,x) \in [0,T] \times \Omega,$$

where ρ is the quantity conserved, *f* is a flux density and *S* is a source term.

Many physical laws are **conservation/balance laws**, e.g. mass, charge, energy, momentum [Bastin, Coron; 2016]

Why coupled and interconnected hyperbolic systems?

- Conservation/balance laws rarely appear isolated
 - ► Navier-Stokes → mass + energy + momentum
 - Propagation phenomena rarely occur in a single direction
- Systems modeled by hyperbolic PDEs do not exist in isolation, e.g.:
 - Electric transmission networks \rightarrow interconnection of individual transmission lines
 - Mechanical vibrations in drilling devices \rightarrow interconnection of different pipes
- Possible coupling with ODEs
 - actuator dynamics (e.g. pump, converter)
 - load dynamics (e.g. valve, motor)
 - sensor dynamics (e.g. flow-rate sensor, tachometer)

Applications: drilling systems, deepwater construction vessels [Wang et al.]

- Interconnections of hyperbolic PDEs and ODEs are not a new problem.
- Many constructive control results based on the backstepping approach, e.g.:
 - Seminal paper [Krstic and Smyshlyaev, 2008]: re-interpretation of the classical Finite Spectrum Assignment [Manitius and Olbrot, 1979] (ODE + input delays)
 - Time-varying delays [Bekiaris-Liberis and Krstic, 2013, Bresch-Pietri, 2012],
 - Cascades of PDEs [Auriol et al., 2019]
 - Cascaded interconnections of hyperbolic PDE-ODE systems: [Aamo, 2012, Hasan et al., 2016, Zhou and Tang, 2012]

- Interconnections of hyperbolic PDEs and ODEs are not a new problem.
- Many constructive control results based on the backstepping approach, e.g.:
 - Seminal paper [Krstic and Smyshlyaev, 2008]: re-interpretation of the classical Finite Spectrum Assignment [Manitius and Olbrot, 1979] (ODE + input delays)
 - Time-varying delays [Bekiaris-Liberis and Krstic, 2013, Bresch-Pietri, 2012],
 - Cascades of PDEs [Auriol et al., 2019]
 - Cascaded interconnections of hyperbolic PDE-ODE systems: [Aamo, 2012, Hasan et al., 2016, Zhou and Tang, 2012]
- For fully-interconnected (non-cascaded) systems some examples include:
 - stabilizing state-feedback control law in [Di Meglio et al., 2018, Wang et al., 2018]
 - output regulation for coupled linear wave–ODE systems [Deutscher and Gabriel, 2021]

• For ODE-hyperbolic PDE-ODE systems with full interconnections (non-cascade):

- state feedback in [Bou Saba et al., 2017] for scalar PDE system (inverible input matrix)
- output-feedback controller based on a Byrnes-Isidori normal form for the proximal ODE, as well as a relative degree one condition in [Deutscher et al., 2018]
- strictly-proper state-feedback control law for scalar PDE in [Bou Saba et al., 2019] requiring minimum-phase assumption (not relative degree 1)
- extended to output-feedback control for scalar PDE in [Wang and Krstic, 2020]
- stabilizing observer-controller robust to delays in the case of a scalar proximal ODE in [Di Meglio et al., 2020]
- Some recent results have also been obtained for interconnected PDE systems with non-linear ODEs [Irscheid et al., 2021]

What you will see in this presentation

- Output regulation of a general class of ODE-PDE-ODE system
 - ► Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
 - Backstepping approach: integral change of coordinates
 - Time delay representation and frequency analysis
 - Stabilizing control law in the absence of the disturbance

What you will see in this presentation

• Output regulation of a general class of ODE-PDE-ODE system

- ► Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
- Backstepping approach: integral change of coordinates
- Time delay representation and frequency analysis
- Stabilizing control law in the absence of the disturbance

A robustification procedure

- Low-pass filter to make the control law strictly proper
- Frequency analysis

What you will see in this presentation

• Output regulation of a general class of ODE-PDE-ODE system

- ► Finite-dimensional exo-system representing the reference trajectory and disturbance dynamics.
- Backstepping approach: integral change of coordinates
- Time delay representation and frequency analysis
- Stabilizing control law in the absence of the disturbance

A robustification procedure

- Low-pass filter to make the control law strictly proper
- Frequency analysis

Observer design

- Backstepping approach to simplify the dynamics
- Luenberger-like observer with tuning operators
- Frequency analysis
- Output-feedback control law

- Measurement: $y(t) = C_{mes}Y(t)$
- Same concepts for scalar and non-scalar PDEs systems

- Measurement: $y(t) = C_{\text{mes}}Y(t)$
- Same concepts for scalar and non-scalar PDEs systems
- Diagonal terms can be removed with exp. change of coordinates

- Measurement: $y(t) = C_{mes}Y(t)$
- Same concepts for scalar and non-scalar PDEs systems
- Diagonal terms can be removed with exp. change of coordinates
- Initial conditions in H^1 with appropriate compatibility conditions \rightarrow well-posedness

- Measurement: $y(t) = C_{mes}Y(t)$
- Same concepts for scalar and non-scalar PDEs systems
- Diagonal terms can be removed with exp. change of coordinates
- Initial conditions in H^1 with appropriate compatibility conditions \rightarrow well-posedness
- Stabilization in the sense of the L²-norm

System under consideration: well-posedness and stabilization objective

$$\dot{X}(t) = A_0 X(t) + E_0 v(t,0) + B_X U(t), \partial_t u(t,x) + \lambda \partial_x u(t,x) = \sigma^{+-}(x)u(t,x), \partial_t v(t,x) - \mu \partial_x v(t,x) = \sigma^{-+}(x)u(t,x), u(t,0) = C_0 X(t) + qv(t,0), \quad v(t,1) = \rho u(t,1) + C_1 Y(t), \dot{Y}(t) = A_1 Y(t) + E_1 u(t,1),$$

Well-posedness in open-loop

For every initial condition $(X_0, u_0, v_0, Y_0) \in \mathbb{R}^p \times H^1([0, 1], \mathbb{R}^2) \times \mathbb{R}^q$ that verifies the compatibility conditions

$$u_0(0) = C_0 X(t) + Q v_0(0), \quad v_0(1) = R u_0(1) + C_1 Y(t)$$

there exists one and one only (X, u, v, Y) which is a solution to the open-loop Cauchy problem (i.e., $U \equiv 0$).

Moreover, there exists $\kappa_0 > 0$ such that for every $(X_0, u_0, v_0, Y_0) \in \mathbb{R}^p \times H^1([0, 1], \mathbb{R}^2) \times \mathbb{R}^q$ satisfying the compatibility conditions, the unique solution verifies

$$||(X(t), u(t, \cdot), v(t, \cdot), Y(t))||_{\chi} \leq \kappa_0 e^{\kappa_0 t} ||(X_0, u_0, v_0, Y_0)||_{\chi}, \quad \forall t \in [0, \infty).$$

where $||(X(t), u(t, \cdot), v(t, \cdot), Y(t))||_{\chi} = \sqrt{||X(t)||^2_{\mathbb{R}^p} + ||u(t, \cdot)||^2_{L^2} + ||v(t, \cdot)||^2_{L^2} + ||Y(t)||^2_{\mathbb{R}^q}}$.

$$\dot{X}(t) = A_0 X(t) + E_0 v(t,0) + B_X U(t), \partial_t u(t,x) + \lambda \partial_x u(t,x) = \sigma^{+-}(x)u(t,x), \partial_t v(t,x) - \mu \partial_x v(t,x) = \sigma^{-+}(x)u(t,x), u(t,0) = C_0 X(t) + qv(t,0), \quad v(t,1) = \rho u(t,1) + C_1 Y(t), \dot{Y}(t) = A_1 Y(t) + E_1 u(t,1),$$

Stabilization objective

Design a continuous control input that **exponentially stabilizes** the system in the sense of the L^2 -norm, i.e. there exist κ_0 and $\nu > 0$ such that for any initial condition $(X_0, u_0, v_0, Y_0) \in \mathbb{R}^p \times H^1([0, 1], \mathbb{R}^2) \times \mathbb{R}^q$, we have

$$||(X(t), u(t, \cdot), v(t, \cdot), Y(t))||_{\chi} \le \kappa_0 e^{-\nu t} ||(X_0, u_0, v_0, Y_0)||_{\chi}, \ 0 \le t$$

<u>Augmented variable:</u> $Y(t) = (Y_1^{\top}(t), Y_2^{\top}(t))^{\top}$

- Y₁ is the "real" ODE state
- Y₂ is an exogenous input: disturbance Y_{dist} and/or a reference trajectory Y_{ref}

$$\dot{Y}(t) = A_1 Y(t) + \begin{pmatrix} E_1 \\ 0_{q_2 \times 1} \end{pmatrix} u(t, 1), \text{ with } A_1 = \begin{pmatrix} A_{11} & A_{12} \\ 0_{q_2 \times q_1} & A_{22} \end{pmatrix},$$

Augmented variable: $Y(t) = (Y_1^{\top}(t), Y_2^{\top}(t))^{\top}$

- Y₁ is the "real" ODE state
- Y₂ is an exogenous input: disturbance Y_{dist} and/or a reference trajectory Y_{ref}

$$\dot{Y}(t) = A_1 Y(t) + \begin{pmatrix} E_1 \\ 0_{q_2 \times 1} \end{pmatrix} u(t, 1), \text{ with } A_1 = \begin{pmatrix} A_{11} & A_{12} \\ 0_{q_2 \times q_1} & A_{22} \end{pmatrix},$$

<u>Virtual output:</u> $\epsilon(t) = C_e Y(t) = \begin{pmatrix} C_{e1} & C_{e2} \end{pmatrix} Y(t)$

Control objective

Design a control law U(t) s.t. the virtual output $\varepsilon(t)$ exp. converges to zero.

Augmented variable: $Y(t) = (Y_1^{\top}(t), Y_2^{\top}(t))^{\top}$

- Y₁ is the "real" ODE state
- Y₂ is an exogenous input: disturbance Y_{dist} and/or a reference trajectory Y_{ref}

$$\dot{Y}(t) = A_1 Y(t) + \begin{pmatrix} E_1 \\ 0_{q_2 \times 1} \end{pmatrix} u(t, 1), \text{ with } A_1 = \begin{pmatrix} A_{11} & A_{12} \\ 0_{q_2 \times q_1} & A_{22} \end{pmatrix},$$

<u>Virtual output:</u> $\varepsilon(t) = C_e Y(t) = \begin{pmatrix} C_{e1} & C_{e2} \end{pmatrix} Y(t)$

• Output regulation problem: $C_{e1} \neq 0$, and $C_{e2} \equiv 0$: we want to regulate to zero a linear combination of components of $Y_1(t)$ in the presence of a disturbance $Y_2(t)$.

Augmented variable: $Y(t) = (Y_1^{\top}(t), Y_2^{\top}(t))^{\top}$

- Y₁ is the "real" ODE state
- Y₂ is an exogenous input: disturbance Y_{dist} and/or a reference trajectory Y_{ref}

$$\dot{Y}(t) = A_1 Y(t) + \begin{pmatrix} E_1 \\ 0_{q_2 \times 1} \end{pmatrix} u(t, 1), \text{ with } A_1 = \begin{pmatrix} A_{11} & A_{12} \\ 0_{q_2 \times q_1} & A_{22} \end{pmatrix},$$

<u>Virtual output:</u> $\varepsilon(t) = C_e Y(t) = (C_{e1} \quad C_{e2}) Y(t)$

• Output tracking problem: $C_{e1,i} - C_{e2,j} = 0$, (other components = 0): we want the *i*th component of the output Y_1 to converge towards the *j*th component of a known trajectory Y_2 .

Assumption 1: Stabilizability

The pairs (A_0, B_0) and (A_{11}, E_1) are **stabilizable**, i.e. there exist $F_0 \in \mathbb{R}^{r \times p}$, $F_1 \in \mathbb{R}^{n \times q_1}$ such that $\overline{A}_0 \doteq A_0 + B_X F_0$ and $\overline{A}_{11} \doteq A_{11} + E_1 F_1$ are Hurwitz.

- Classical requirement found in most of the papers dealing with ODE-PDE-ODE
- Not overly conservative (necessary to stabilize *Y*, slightly conservative for *X*).

Assumption 2

For all $s \in \mathbb{C}_0$, the matrices (A_0, B_X, C_0) satisfy

rank
$$\begin{pmatrix} sld - A_0 & B_X \\ C_0 & 0_{n \times r} \end{pmatrix} = p + 1 = p + n.$$

• The function $P_0(s) = C_0(s \mathrm{Id} - \bar{A}_0)^{-1} B_X$ does not have any zeros in \mathbb{C}^+

• Stable right inverse of $P_0(s)$

Assumption 3: Delay-robustness

The coefficients ρ and q verifives $|\rho q| < 1$.

- No asymptotic chain of eigenvalues with non-negative real parts
- Necessary for (delay-) robust stabilization

Assumption 4: detectability

The pairs (A_1, C) , (A_0, C_0) are detectable (i.e. there exist $L_0 \in \mathbb{R}^{p \times n}$ and $L_1 \in \mathbb{R}^{q \times d}$ such that $\tilde{A}_1 \doteq A_1 + L_1 C_{mes}$ and $\tilde{A}_0 \doteq A_0 + L_0 C_0$ are Hurwitz).

- Classical requirement found in most of the papers dealing with ODE-PDE-ODE
- Not overly conservative (necessary for reconstruction of *X*₀, slightly conservative for *Y*).

Assumption 5

For all $s \in \mathbb{C}^+$, the matrices (A_1, E_1, C) satisfy

$$\operatorname{rank}\left(\begin{pmatrix} \operatorname{sld} - A_1 & E_1 \\ C_{mes} & 0 \end{pmatrix}\right) = q + 1 = q + n.$$
(1)

- Necessary to independently reconstruct the different PDE boundary values by inverting the Y dynamics.
- The function $P_1(s)\doteq C_{mes}(s{
 m Id}- ilde{A}_1)^{-1}E_1$ does not have any zeros in \mathbb{C}^+
- Stable left-inverse of $P_1(s)$

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_a \in \mathbb{R}^{q_1 \times q_2}, F_a \in \mathbb{R}^{n \times q_2}$ solutions to the **regulator equations**:

$$-A_{11}T_a + T_aA_{22} + A_{12} = -E_1F_a, -C_{e1}T_a + C_{e2} = 0.$$

- Non-resonance condition.
- A₁₁ and A₂₂ have disjoint spectra, and the number of outputs we regulate is coherent with the number of inputs.
- The matrices T_a , F_a can be computed using a Schur triangulation.

- Backstepping transformation to simplify the dynamics and the design of the control law.
- The regulation problem rewrites as a stabilization problem.
- Time-delay representation and frequency analysis.
- Low-pass filtering of the control law to make it strictly proper.

Backstepping methodology

- Map the original system to a *target system* for which the stability analysis is easier.
- Variable change: integral transformation, classically Volterra transform of the second kind

$$\alpha(t,x) = u(t,x) - \int_0^x K^{uu}(x,\xi)u(t,\xi) + K^{uv}(x,\xi)v(t,\xi)d\xi,$$

$$\beta(t,x) = v(t,x) - \int_0^x K^{vu}(x,\xi)u(t,\xi) + K^{vv}(x,\xi)v(t,\xi)d\xi,$$

Condensed form: $\gamma(t,x) = w(t,x) - \int_0^x K(x,y)w(t,y)dy.$

Limitations

- Choice of an adequate target system.
- Proof of existence and invertibility of an adequate backstepping transform.

$$u_t(t,x) + \lambda u_x(t,x) = \sigma^+ v(t,x),$$
$$v_t(t,x) - \mu v_x(t,x) = \sigma^- u(t,x).$$

$$u_t(t,x) + \lambda u_x(t,x) = \sigma^+ v(t,x),$$

$$v_t(t,x) - \mu v_x(t,x) = \sigma^- u(t,x).$$

$$\alpha_{t}(t, x) + \lambda \alpha_{x}(t, x) = 0,$$

$$\beta_{t}(t, x) - \mu \beta_{x}(t, x) = 0.$$

$$\overline{U}(t) \longrightarrow \left(\begin{array}{c} \alpha(t, x) \\ \phi \\ \phi \\ \beta(t, x) \end{array} \right) \rho$$

$$\beta(t, x) \longrightarrow \left(\begin{array}{c} \alpha(t, x) \\ \phi \\ \beta(t, x) \end{array} \right)$$

1.

$$u_t(t,x) + \lambda u_x(t,x) = \sigma^+ v(t,x),$$

$$v_t(t,x) - \mu v_x(t,x) = \sigma^- u(t,x).$$

$$U(t) \xrightarrow{q} \underbrace{u(t,x)}_{v(t,x)} \xrightarrow{q} \underbrace{\sigma^{-} \cdot \sigma^{+} \cdot \cdots}_{v(t,x)} \rho$$

$$\underbrace{0}_{u(t,0) = qv(t,0) + U(t)}_{v(t,1) = \rho u(t,1)}$$

$$\alpha_{t}(t,x) + \lambda \alpha_{x}(t,x) = 0,$$

$$\beta_{t}(t,x) - \mu \beta_{x}(t,x) = 0.$$

$$\overline{U}(t) \longrightarrow \left(\begin{array}{c} \alpha(t,x) \\ \varphi \\ \beta(t,x) \end{array} \right) \rho$$

$$\beta(t,x) \longrightarrow \left(\begin{array}{c} \alpha(t,x) \\ \beta(t,x) \\ \varphi \\ \beta(t,0) + U(t) \\ - \int_{0}^{1} N^{\alpha}(\xi) \alpha(t,\xi) + N^{\beta}(\xi) \beta(t,\xi) d\xi. \\ \beta(t,1) = \rho \alpha(t,1) \end{array} \right)$$

$$u_t(t,x) + \lambda u_x(t,x) = \sigma^+ v(t,x),$$

$$v_t(t,x) - \mu v_x(t,x) = \sigma^- u(t,x).$$

$$U(t) \longrightarrow \left(\begin{array}{c} u(t,x) \\ \sigma^{-} & \sigma^{+} \\ v(t,x) \end{array} \right) \rho$$

$$(t,0) = qv(t,0) + U(t)$$

$$v(t,1) = \rho u(t,1)$$

$$\alpha_{t}(t,x) + \lambda \alpha_{x}(t,x) = 0,$$

$$\beta_{t}(t,x) - \mu \beta_{x}(t,x) = 0.$$

$$\overline{U}(t) \longrightarrow \left(\begin{array}{c} \alpha(t,x) \\ q \\ \beta(t,x) \end{array} \right) \rho$$

$$\beta(t,x) \longrightarrow \left(\begin{array}{c} \alpha(t,x) \\ \beta(t,x) \\ \gamma(t,x) \\ \beta(t,x) \end{array} \right) \rho$$

$$\beta(t,1) = \rho\alpha(t,1)$$

Natural control law

 $U(t) = -q\beta(t,0) + \int_0^1 \left(N^{\alpha}(\xi)\alpha(t,\xi) + N^{\beta}(\xi)\beta(t,\xi) \right) d\xi.$
$$\begin{split} X(t) &= \xi(t) + \int_0^1 M^{12}(y)\alpha(t,y) + M^{13}(y)\beta(t,y)dy + \begin{bmatrix} M^{14} & M^{15} \end{bmatrix} \eta(t), \\ u(t,x) &= \alpha(t,x) + \int_x^1 M^{22}(x,y)\alpha(y) + M^{23}(x,y)\beta(y)dy + \begin{bmatrix} M^{24}(x) & M^{25}(x) \end{bmatrix} \eta(t), \\ v(t,x) &= \beta(t,x) + \int_x^1 M^{32}(x,y)\alpha(y) + M^{33}(x,y)\beta(y)dy + \begin{bmatrix} M^{34}(x) & M^{35}(x) \end{bmatrix} \eta(t), \\ Y(t) &= \eta(t). \end{split}$$

• Triangular transformation: invertible.

$$\begin{pmatrix} X(t) \\ u(t,x) \\ v(t,x) \\ Y(t) \end{pmatrix} = \begin{pmatrix} \mathsf{Id} & \int_0^1 M^{12}(y) dy & \int_0^1 M^{13}(y) dy & [M^{14} M^{15}] \\ 0 & \mathsf{Id} + \int_x^1 M^{22}(x,y) dy & \int_x^1 M^{23}(x,y) dy & [M^{24}(x) M^{25}(x)] \\ 0 & \int_x^1 M^{32}(x,y) dy & \mathsf{Id} + \int_x^1 M^{33}(x,y) dy & [M^{34}(x) M^{35}(x)] \\ 0 & 0 & \mathsf{Id} \end{pmatrix} \begin{pmatrix} \xi(t) \\ \alpha(t,x) \\ \beta(t,x) \\ \eta(t) \end{pmatrix}$$

- Kernels are bounded functions.
- Unique solution due to the rank condition on *C*₀.

Original system:

Original system:

$$\dot{X}(t) = A_0 X(t) + E_0 v(t,0) + B_X U(t), \partial_t u(t,x) + \Lambda^+ \partial_x u(t,x) = \sigma^{+-}(x) u(t,x), \partial_t v(t,x) - \Lambda^- \partial_x v(t,x) = \sigma^{-+}(x) u(t,x), u(t,0) = C_0 X(t) + q v(t,0), v(t,1) = \rho u(t,1) + C_1 Y(t), \dot{Y}(t) = A_1 Y(t) + (E_1 0)^\top u(t,1),$$

Target system:

$$\dot{\xi}(t) = \bar{A}_0 \xi(t) + \bar{E}_1 \alpha(t, 1) + \bar{E}_0 \beta(t, 0) + M \eta(t) + \int_0^1 M_\alpha(y) \alpha(t, y) + M_\beta(y) \beta(t, y) dy + B_X \bar{U}(t), \partial_t \alpha(t, x) + \Lambda^+ \partial_x \alpha(t, x) = 0, \partial_t \beta(t, x) - \Lambda^- \partial_x \beta(t, x) = 0, \alpha(t, 0) = C_0 \xi(t) + q \beta(t, 0), \quad \beta(t, 1) = \rho \alpha(t, 1), \dot{\eta}(t) = \bar{A}_1 \eta(t) + (E_1 \quad 0)^\top \alpha(t, 1),$$

$$\bar{A}_0 = A_0 + B_X F_0, \ \bar{A}_1 = \begin{pmatrix} A_{11} + E_1 F_1 & A_{12} + E_1 (F_a + F_1 T_a) \\ 0 & A_{22} \end{pmatrix}$$

Advantages of the target system:

- Simplified in-domain couplings.
- Almost a "cascade structure"
- To stabilize the whole system, we can focus on the stabilization of ξ .

$$\dot{\xi}(t) = \bar{A}_0 \xi(t) + \bar{E}_1 \alpha(t, 1) + \bar{E}_0 \beta(t, 0) + M \eta(t) + \int_0^1 M_\alpha(y) \alpha(t, y) + M_\beta(y) \beta(t, y) dy + B_X \bar{U}(t)$$

$$\partial_t \alpha(t, x) + \Lambda^+ \partial_x \alpha(t, x) = 0, \partial_t \beta(t, x) - \Lambda^- \partial_x \beta(t, x) = 0, \alpha(t, 0) = C_0 \xi(t) + q \beta(t, 0), \quad \beta(t, 1) = \rho \alpha(t, 1), \dot{\eta}(t) = \bar{A}_1 \eta(t) + (E_1 \quad 0)^\top \alpha(t, 1),$$

Stability and regulation

If $C_0\xi$ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_a \in \mathbb{R}^{q_1 \times q_2}, F_a \in \mathbb{R}^{n \times q_2}$ solutions to the **regulator equations**:

$$-A_{11}T_a + T_aA_{22} + A_{12} = -E_1F_a, -C_{e1}T_a + C_{e2} = 0.$$

Stability and regulation

If ξ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.

<u>Proof</u>: If $C_0\xi$ converges to zero, then so does $||(\alpha,\beta)||_{L^2}$.

We have

$$\dot{Y}_{1} = (A_{11} + E_{1}F_{1})Y_{1}(t) + (A_{12} + E_{1}(F_{a} + F_{1}T_{a}))Y_{2}(t) + E_{1}\alpha(t, 1)$$

$$= (A_{11} + E_{1}F_{1})Y_{1}(t) + (A_{11}T_{a} - E_{1}F_{a} - T_{a}A_{22})Y_{2}(t) + E_{1}(F_{a} + F_{1}T_{a})Y_{2}(t) + E_{1}\alpha(t, 1),$$

$$\Rightarrow \overbrace{(Y_{1} + T_{a}Y_{2})}^{\longrightarrow 0}(t) = \overline{A}_{11}(Y_{1} + T_{a}Y_{2}) + \overbrace{E_{1}\alpha(t, 1)}^{\longrightarrow 0}.$$

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_a \in \mathbb{R}^{q_1 \times q_2}, F_a \in \mathbb{R}^{n \times q_2}$ solutions to the **regulator equations**:

$$-A_{11}T_a + T_aA_{22} + A_{12} = -E_1F_a, -C_{e1}T_a + C_{e2} = 0.$$

Stability and regulation

If ξ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.

<u>Proof:</u> If $C_0\xi$ converges to zero, then so does $||(\alpha,\beta)||_{L^2}$.

We have

$$\dot{Y}_{1} = (A_{11} + E_{1}F_{1})Y_{1}(t) + (A_{12} + E_{1}(F_{a} + F_{1}T_{a}))Y_{2}(t) + E_{1}\alpha(t, 1)$$

$$= (A_{11} + E_{1}F_{1})Y_{1}(t) + (A_{11}T_{a} - E_{1}F_{a} - T_{a}A_{22})Y_{2}(t) + E_{1}(F_{a} + F_{1}T_{a})Y_{2}(t) + E_{1}\alpha(t, 1),$$

$$\Rightarrow \overbrace{(Y_{1} + T_{a}Y_{2})}^{\longrightarrow 0}(t) = \overline{A}_{11}(Y_{1} + T_{a}Y_{2}) + \overbrace{E_{1}\alpha(t, 1)}^{\longrightarrow 0}.$$

• $Y_1 + T_a Y_2$ exp. stable $\Rightarrow C_e(Y_1 + T_a Y_2)(t) = C_{e1} Y_1(t) + C_{e2} Y_2(t) = \varepsilon(t)$ goes to zero.

Assumption 6

The matrix A_{22} is marginally stable, i.e., all its eigenvalues have zero real parts. There exist matrices $T_a \in \mathbb{R}^{q_1 \times q_2}, F_a \in \mathbb{R}^{n \times q_2}$ solutions to the **regulator equations**:

$$-A_{11}T_a + T_aA_{22} + A_{12} = -E_1F_a, -C_{e1}T_a + C_{e2} = 0.$$

Stability and regulation

If ξ exp. converges to zero, then $\varepsilon(t) \rightarrow 0$. Furthermore, the trajectories are bounded.

<u>Proof:</u> If $C_0\xi$ converges to zero, then so does $||(\alpha,\beta)||_{L^2}$.

We have

$$\dot{Y}_{1} = (A_{11} + E_{1}F_{1})Y_{1}(t) + (A_{12} + E_{1}(F_{a} + F_{1}T_{a}))Y_{2}(t) + E_{1}\alpha(t, 1)$$

$$= (A_{11} + E_{1}F_{1})Y_{1}(t) + (A_{11}T_{a} - E_{1}F_{a} - T_{a}A_{22})Y_{2}(t) + E_{1}(F_{a} + F_{1}T_{a})Y_{2}(t) + E_{1}\alpha(t, 1),$$

$$\Rightarrow \overbrace{(Y_{1} + T_{a}Y_{2})}^{\longrightarrow 0}(t) = \overline{A}_{11}(Y_{1} + T_{a}Y_{2}) + \overbrace{E_{1}\alpha(t, 1)}^{\longrightarrow 0}.$$

• $Y_1 + T_a Y_2$ exp. stable $\Rightarrow C_e(Y_1 + T_a Y_2)(t) = C_{e1} Y_1(t) + C_{e2} Y_2(t) = \varepsilon(t)$ goes to zero.

• Invertibility + boundedness of the backstepping transf. implies boundedness of the state.

$$\alpha_t(t,x) + \lambda \alpha_x(t,x) = 0$$

$$\beta_t(t,x) - \mu \beta_x(t,x) = 0$$

$$\alpha(t,0) = q\beta(t,0) + C_0\xi(t)$$

$$\beta(t,1) = \rho\alpha(t,1)$$

 $\alpha_t(t,x) + \lambda \alpha_x(t,x) = 0 \rightarrow \text{Transport equation}$ $\beta_t(t,x) - \mu \beta_x(t,x) = 0 \rightarrow \text{Transport equation}$

$$\alpha(t,0) = q\beta(t,0) + C_0\xi(t)$$

$$\beta(t,1) = \rho\alpha(t,1)$$

 $\alpha_t(t,x) + \lambda \alpha_x(t,x) = 0 \rightarrow \text{Transport equation}$ $\beta_t(t,x) - \mu \beta_x(t,x) = 0 \rightarrow \text{Transport equation}$

$$\alpha(t,0) = q\beta(t,0) + C_0\xi(t)$$

$$\beta(t,1) = \rho\alpha(t,1)$$

Method of characteristics:

$$\alpha(t,x) = \alpha(t-\frac{x}{\lambda},0), \quad \beta(t,x) = \rho\alpha(t-\frac{(1-x)}{\mu}-\frac{1}{\lambda},0)$$

Difference Equation satisfied by $\alpha(t, 0)$

$$lpha(t,0)=
ho q lpha(t- au,0)+C_0\xi(t), \quad t>rac{1}{\lambda}+rac{1}{\mu}= au$$

Using the Laplace transform: $(1 - \rho q e^{-\tau s}) \alpha(s, 0) = C_0 \xi(s)$

We can kill the α and β terms to obtain $\xi\text{-terms!}$

$$\begin{aligned} \dot{\eta}(t) &= \bar{A}_1 \eta(t) + (E_1 \quad 0)^{\perp} \alpha(t, 1) \\ \dot{\xi}(t) &= \bar{A}_0 \xi(t) + \bar{E}_1 \alpha(t, 1) + \bar{E}_0 \beta(t, 0) + M \eta(t) + \int_0^1 M_\alpha(y) \alpha(t, y) + M_\beta(y) \beta(t, y) dy + \frac{B_X \bar{U}(t)}{B_X \bar{U}(t)}. \end{aligned}$$

Laplace transform on η_1

$$\eta_1(s) = (s \operatorname{Id} - \bar{A}_{11})^{-1} (\bar{A}_{12} \eta_2(s) + E_1 e^{-\frac{s}{\lambda}} \alpha(s, 0))$$

We can get rid of the η_1 -terms!

$$\dot{\eta}(t) = \bar{A}_1 \eta(t) + (E_1 \quad 0)^{\perp} \alpha(t, 1) \dot{\xi}(t) = \bar{A}_0 \xi(t) + \bar{E}_1 \alpha(t, 1) + \bar{E}_0 \beta(t, 0) + M \eta(t) + \int_0^1 M_\alpha(y) \alpha(t, y) + M_\beta(y) \beta(t, y) dy + B_X \bar{U}(t).$$

Laplace transform on η_1

$$\eta_1(s) = (s \operatorname{Id} - \bar{A}_{11})^{-1} (\bar{A}_{12} \eta_2(s) + E_1 e^{-\frac{s}{\lambda}} \alpha(s, 0))$$

We can get rid of the η_1 -terms!

Laplace transform on ξ

$$(s\mathsf{Id}-\bar{A}_0)\xi(s)=G(s)C_0\xi(s)+H(s)\eta_2(s)+B_X\bar{U}(s),$$

 $P_0 = C_0(sld - \bar{A}_0)^{-1}B_X$ admits a stable right inverse P_0^+ .

 $C_0\xi(s) = C_0(s\mathrm{Id}-\bar{A}_0)^{-1}G(s)C_0\xi(s) + C_0(s\mathrm{Id}-\bar{A}_0)^{-1}H(s)\eta_2(s) + P_0(s)\bar{U}(s),$

$$\dot{\eta}(t) = \bar{A}_1 \eta(t) + (E_1 \quad 0)^\top \alpha(t, 1) \\ \dot{\xi}(t) = \bar{A}_0 \xi(t) + \bar{E}_1 \alpha(t, 1) + \bar{E}_0 \beta(t, 0) + M \eta(t) + \int_0^1 M_\alpha(y) \alpha(t, y) + M_\beta(y) \beta(t, y) dy + B_X \bar{U}(t).$$

Laplace transform on η_1

$$\eta_1(s) = (s \operatorname{Id} - \bar{A}_{11})^{-1} (\bar{A}_{12} \eta_2(s) + E_1 e^{-\frac{s}{\lambda}} \alpha(s, 0))$$

We can get rid of the η_1 -terms!

Laplace transform on ξ

$$(s\operatorname{Id} - \overline{A}_0)\xi(s) = G(s)C_0\xi(s) + H(s)\eta_2(s) + B_X\overline{U}(s),$$

 $P_0 = C_0(sld - \bar{A}_0)^{-1}B_X$ admits a stable right inverse P_0^+ .

 $C_0\xi(s) = C_0(sId - \bar{A}_0)^{-1}G(s)C_0\xi(s) + C_0(sId - \bar{A}_0)^{-1}H(s)\eta_2(s) + P_0(s)\bar{U}(s),$

Stabilizing control law

$$\bar{U}(s) = -P_0^+(s)C_0(s\mathsf{Id}-\bar{A}_0)^{-1}G(s)C_0\xi(s) - P_0^+(s)C_0(s\mathsf{Id}-\bar{A}_0)^{-1}H(s)\eta_2(s) - P_0^+(s)C_0(s\mathsf{Id}-\bar{A}_0)^{-1}H(s)\eta_2(s)$$

disturbance rejection or tracking

A non strictly proper control law

Stabilizing control law

$$\bar{U}(s) = -P_0^+(s)C_0(s\mathrm{Id}-\bar{A}_0)^{-1}G(s)C_0\xi(s)$$

stabilization

 $= F_{\xi}(s)\xi(s) + F_{\eta}(s)\eta_2(s)$

 $-\underbrace{P_0^+(s)C_0(s\mathrm{Id}-\bar{A}_0)^{-1}H(s)\eta_2(s)}_{\text{disturbance rejection or tracking}}$

- The control law ay not be strictly proper due to $P_0^+(s) \rightarrow \text{Robustness issues.}$
- We can make F_η(s) strictly proper using our prior knowledge of the dynamics.
- We can make $F_{\xi}(s)$ strictly proper using a low-pass filter.

$$F_{\xi}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}G(s)C_0, \quad F_{\eta}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}H(s)$$

Filtered control law

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and $0 < \delta < 1$ such that

$$\forall x \in \mathbb{R}, \ |1 - w(jx)| \leq \frac{1 - \delta}{\|G\|_{\infty} \overline{\sigma}(C_0(jx \operatorname{Id} - \overline{A}_0)^{-1})},$$

then $\bar{U}(s) = w(s)F_{\xi}(s)\xi(s) + \bar{F}_{\eta}(s)\eta_2(s)$ stabilizes $C_0\xi(s)$

<u>Proof:</u> Let $\Phi(s) = (1 - w(s))C_0(s \operatorname{Id} - \overline{A}_0)^{-1}G(s)$.

$$F_{\xi}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}G(s)C_0, \quad F_{\eta}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}H(s)$$

Filtered control law

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and $0 < \delta < 1$ such that

$$\forall x \in \mathbb{R}, \ |1 - w(jx)| \leq \frac{1 - \delta}{\|G\|_{\infty} \overline{\sigma}(C_0(jx \operatorname{Id} - \overline{A}_0)^{-1})},$$

then $\bar{U}(s) = w(s)F_{\xi}(s)\xi(s) + \bar{F}_{\eta}(s)\eta_2(s)$ stabilizes $C_0\xi(s)$

<u>Proof:</u> Let $\Phi(s) = (1 - w(s))C_0(s \operatorname{Id} - \overline{A}_0)^{-1}G(s)$.

Φ is stable and strictly proper

$$F_{\xi}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}G(s)C_0, \quad F_{\eta}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}H(s)$$

Filtered control law

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and $0 < \delta < 1$ such that

$$\forall x \in \mathbb{R}, \ |1 - \mathrm{w}(jx)| \leq \frac{1 - \delta}{\|G\|_{\infty} \overline{\sigma}(C_0(jx \operatorname{Id} - \overline{A}_0)^{-1})},$$

then $ar{U}(s) = w(s)F_{\xi}(s)\xi(s) + ar{F}_{\eta}(s)\eta_2(s)$ stabilizes $C_0\xi(s)$

<u>Proof</u>: Let $\Phi(s) = (1 - w(s))C_0(s \operatorname{Id} - \overline{A}_0)^{-1}G(s)$.

- Φ is stable and strictly proper
- G(s) is unif. bounded, we have $\bar{\sigma}(G(jx)) \leq \|G\|_{\infty}$ for all x

$$F_{\xi}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}G(s)C_0, \quad F_{\eta}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}H(s)$$

Filtered control law

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and $0 < \delta < 1$ such that

$$\forall x \in \mathbb{R}, \ |1 - \mathrm{w}(jx)| \leq \frac{1 - \delta}{\|G\|_{\infty} \overline{\sigma}(C_0(jx \operatorname{Id} - \overline{A}_0)^{-1})},$$

then $ar{U}(s) = w(s)F_{\xi}(s)\xi(s) + ar{F}_{\eta}(s)\eta_2(s)$ stabilizes $C_0\xi(s)$

<u>Proof</u>: Let $\Phi(s) = (1 - w(s))C_0(s \operatorname{Id} - \overline{A}_0)^{-1}G(s)$.

- Φ is stable and strictly proper
- G(s) is unif. bounded, we have $\bar{\sigma}(G(jx)) \leq \|G\|_{\infty}$ for all x
- We have $ar{\sigma}(\phi(\textit{jx})) \leq 1 \delta \Rightarrow ||\Phi||_{\infty} < 1$

$$F_{\xi}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}G(s)C_0, \quad F_{\eta}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}H(s)$$

Filtered control law

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and $0 < \delta < 1$ such that

$$orall x \in \mathbb{R}, \ |1-\mathrm{w}(jx)| \leq rac{1-\delta}{\|G\|_{\infty}ar{\sigma}(C_0(jx\mathrm{Id}-ar{A}_0)^{-1})},$$

then $ar{U}(s)=w(s)F_{\xi}(s)\xi(s)+ar{F}_{\eta}(s)\eta_{2}(s)$ stabilizes $C_{0}\xi(s)$

<u>Proof</u>: Let $\Phi(s) = (1 - w(s))C_0(s \operatorname{Id} - \overline{A}_0)^{-1}G(s)$.

- Φ is stable and strictly proper
- G(s) is unif. bounded, we have $\bar{\sigma}(G(jx)) \leq \|G\|_{\infty}$ for all x
- We have $\bar{\sigma}(\phi(jx)) \leq 1 \delta \Rightarrow ||\Phi||_{\infty} < 1$
- Characteristic equation (1 − Φ(s))C₀ξ(s) = 0 → exponential stability

$$F_{\xi}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}G(s)C_0, \quad F_{\eta}(s) = -P_0^+(s)C_0(s ext{Id}-ar{A}_0)^{-1}H(s)$$

Filtered control law

Let w(s) be any low-pass filter, with a sufficiently high relative degree, and $0 < \delta < 1$ such that

$$orall x \in \mathbb{R}, \ |1-\mathrm{w}(jx)| \leq rac{1-\delta}{\|G\|_{\infty}ar{\sigma}(C_0(jx\mathrm{Id}-ar{A}_0)^{-1})},$$

then $ar{U}(s) = w(s)F_{\xi}(s)\xi(s) + ar{F}_{\eta}(s)\eta_2(s)$ stabilizes $C_0\xi(s)$

<u>Proof</u>: Let $\Phi(s) = (1 - w(s))C_0(s \operatorname{Id} - \overline{A}_0)^{-1}G(s)$.

- Φ is stable and strictly proper
- G(s) is unif. bounded, we have $\bar{\sigma}(G(jx)) \leq \|G\|_{\infty}$ for all x
- We have $\bar{\sigma}(\phi(jx)) \leq 1 \delta \Rightarrow ||\Phi||_{\infty} < 1$
- Characteristic equation (1 − Φ(s))C₀ξ(s) = 0 → exponential stability

Strictly proper stabilizing control law!

- Backstepping transformation to simplify the dynamics and the design of the control law.
- The regulation problem rewrites as a stabilization problem.
- Time-delay representation and frequency analysis.
- Low-pass filtering of the control law to make it strictly proper.

Observer design

$$\dot{X}(t) = A_0 X(t) + E_0 v(t,0) + B_X U(t), \partial_t u(t,x) + \Lambda^+ \partial_x u(t,x) = \Sigma^{++}(x) u(t,x) + \Sigma^{+-}(x) v(t,x), \partial_t v(t,x) - \Lambda^- \partial_x v(t,x) = \Sigma^{-+}(x) u(t,x) + \Sigma^{--}(x) v(t,x), u(t,0) = C_0 X(t) + Q v(t,0), \quad v(t,1) = R u(t,1) + C_1 Y(t), \dot{Y}(t) = A_{11} Y(t) + E_1 u(t,1), y = C_{mes} Y(t), \quad \dim(y) \ge \dim(u)$$

Problem statement

Design a state observer for the system based on the available measurement y(t).

• Backstepping transformation to simplify the dynamics and the design of the observer.

- Backstepping transformation to simplify the dynamics and the design of the observer.
- Luenberger-like observer with operators O_i that need to be tuned.

- Backstepping transformation to simplify the dynamics and the design of the observer.
- Luenberger-like observer with operators O_i that need to be tuned.
- Design of the operators O_i to guarantee the exponential stability of the error system

- Backstepping transformation to simplify the dynamics and the design of the observer.
- Luenberger-like observer with operators O_i that need to be tuned.
- Design of the operators O_i to guarantee the exponential stability of the error system
- Convergence of the observer state to the real state.

Target system

$$\begin{split} \dot{\xi}(t) &= \tilde{A}_0 \xi(t) + G_3 \alpha(t, 1) + G_4 Y(t) + B_X U(t), \\ \alpha(t, 0) &= Q \beta(t, 0) + C_0 \xi(t) + (Q \gamma_\beta(0) - \gamma_\alpha(0)) Y(t) + \int_0^1 F^\alpha(y) \alpha(t, y) + F^\beta(y) \beta(t, y) dy, \\ \alpha_t(t, x) + \Lambda^+ \alpha_x(t, x) &= G_1(x) \alpha(t, 1), \\ \beta_t(t, x) - \Lambda^- \beta_x(t, x) &= G_2(x) \alpha(t, 1), \\ \beta(t, 1) &= R \alpha(t, 1), \ \dot{Y}(t) &= A_1 Y(t) + E_1 \alpha(t, 1). \end{split}$$

F^{α} strictly lower triangular

Target system

Advantages of the target system:

- Simplified in-domain couplings.
- Almost a "cascade structure" (except for the α(t, 1)-terms);
- Simplified observer design

$$\begin{aligned} X(t) &= \xi(t) - \int_0^1 L_1(y)\alpha(y) + L_2(y)\beta(y)dy, \\ u(t,x) &= \alpha(t,x) - \int_x^1 L^{\alpha\alpha}(x,y)\alpha(y)dy - \int_x^1 L^{\alpha\beta}(x,y)\beta(y)dy + \gamma_\alpha(x)Y(t), \\ v(t,x) &= \beta(t,x) - \int_x^1 L^{\beta\alpha}(x,y)\alpha(y)dy - \int_x^1 L^{\beta\beta}(x,y)\beta(y)dy + \gamma_\beta(x)Y(t), \\ Y(t) &= Y(t), \end{aligned}$$

- Triangular transformation: invertible.
- Kernels are bounded functions.

Observer equations

$$\begin{split} \underline{\text{System }(\xi,\alpha,\beta,Y)} \\ \dot{\xi}(t) &= \tilde{A}_0\xi(t) + G_3\alpha(t,1) + G_4Y(t) + B_XU(t), \\ \alpha(t,0) &= Q\beta(t,0) + C_0\xi(t) + (Q\gamma_\beta(0) - \gamma_\alpha(0))Y(t) + \int_0^1 F^\alpha(y)\alpha(t,y) + F^\beta(y)\beta(t,y)dy, \\ \alpha_t(t,x) + \Lambda^+\alpha_x(t,x) &= G_1(x)\alpha(t,1), \\ \beta_t(t,x) - \Lambda^-\beta_x(t,x) &= G_2(x)\alpha(t,1), \\ \beta(t,1) &= R\alpha(t,1), \ \dot{Y}(t) &= A_1Y(t) + E_1\alpha(t,1). \end{split}$$

 $\label{eq:system} \text{System} \ (\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y}) \text{:} \quad \textit{O}_{i} : \text{stable operators.}$

$$\begin{split} \dot{\hat{\xi}}(t) &= \tilde{A}_0 \hat{\xi}(t) + G_3 \hat{\alpha}(t, 1) + G_4 \hat{Y}(t) - \mathcal{O}_0(\tilde{y}), \\ \hat{\alpha}(t, 0) &= Q \hat{\beta}(t, 0) + C_0 \hat{\xi}(t) + (Q \gamma_\beta(0) - \gamma_\alpha(0)) \hat{Y}(t) \\ &+ \int_0^1 F^\alpha(y) \hat{\alpha}(t, y) + F^\beta(y) \hat{\beta}(t, y) dy - \mathcal{O}_1(\tilde{y}), \\ \hat{\alpha}_t(t, x) + \Lambda^+ \hat{\alpha}_x(t, x) &= G_1(x) \hat{\alpha}(t, 1) - \mathcal{O}_\alpha(x, \tilde{y}), \\ \hat{\beta}_t(t, x) - \Lambda^- \hat{\beta}_x(t, x) &= G_2(x) \hat{\alpha}(t, 1) - \mathcal{O}_\beta(x, \tilde{y}), \\ \hat{\beta}(t, 1) &= R \hat{\alpha}(t, 1), \quad \dot{\hat{Y}}(t) = A_1 \hat{Y}(t) + E_1 \hat{\alpha}(t, 1) - L_1 \mathcal{C} \tilde{y}, \end{split}$$

Error system

$$\begin{split} \dot{\tilde{\xi}}(t) &= \tilde{A}_0 \tilde{\xi}(t) + G_3 \tilde{\alpha}(t,1) + G_4 \tilde{Y}(t) + B_X U(t) O_0(\tilde{y}) \\ \tilde{\alpha}(t,0) &= C_0 \tilde{\xi}(t) + Q \tilde{\beta}(t,0) + (Q \gamma_\beta(0) - \gamma_\alpha(0)) \tilde{Y}(t) \\ &+ \int_0^1 F^\alpha(y) \tilde{\alpha}(t,y) + F^\beta(y) \tilde{\beta}(t,y) dy + O_1(\tilde{y}), \\ \tilde{\alpha}_t(t,x) + \Lambda^+ \tilde{\alpha}_x(t,x) &= G_1(x) \tilde{\alpha}(t,1) + O_\alpha(x,\tilde{y}) \\ \tilde{\beta}_t(t,x) - \Lambda^- \tilde{\beta}_x(t,x) &= G_2(x) \tilde{\alpha}(t,1) + O_\beta(x,\tilde{y}) \\ \tilde{\beta}(t,1) &= R \tilde{\alpha}(t,1), \quad \dot{\tilde{Y}}(t) = \tilde{A}_1 \tilde{Y}(t) + E_1 \tilde{\alpha}(t,1). \end{split}$$

• **Objective:** Tune the gains O_i such that the error system exponentially converges to zero.

Lemma: Cascade structure of the error system

If $\tilde{\xi}(t)$, $\tilde{\alpha}(t, 1)$ and $\tilde{Y}(t)$ exponentially converge to zero, then the state ($\tilde{\xi}, \tilde{\alpha}, \tilde{\beta}, \tilde{Y}$) exponentially converges to zero. This implies the convergence of the observer state to the real state.

Design of the operators O_i

• Laplace transform of $\dot{\tilde{Y}}(t) = \tilde{A}_1 \tilde{Y}(t) + E_1 \tilde{\alpha}(t, 1)$:

$$(\operatorname{sld} - \widetilde{A}_1)\widetilde{Y}(s) = E_1\widetilde{lpha}(s,1)
ightarrow \left| \widetilde{y}(s) = C_{mes}(\operatorname{sld} - \widetilde{A}_1)^{-1}E_1\widetilde{lpha}(s,1) \right|$$

where \tilde{A}_1 is Hurwitz (Assumption 4) and $C_{mes}(sld - \tilde{A}_1)^{-1}E_1$ has no zeros in the RHP (Assumption 2)

Design of the operators O_i

• Laplace transform of $\dot{\tilde{Y}}(t) = \tilde{A}_1 \tilde{Y}(t) + E_1 \tilde{\alpha}(t, 1)$:

$$(\operatorname{sld} - \widetilde{A}_1)\widetilde{Y}(s) = E_1\widetilde{lpha}(s,1)
ightarrow \left| \widetilde{y}(s) = C_{mes}(\operatorname{sld} - \widetilde{A}_1)^{-1}E_1\widetilde{lpha}(s,1) \right|$$

where \tilde{A}_1 is Hurwitz (Assumption 4) and $C_{mes}(sId - \tilde{A}_1)^{-1}E_1$ has no zeros in the RHP (Assumption 2)

• $P_1(s) = C_{mes}(sId - \tilde{A}_1)^{-1}E_1$ has a stable left-inverse (Assumption 4):

$$\widetilde{\alpha}(s,1) = P_1^-(s)\widetilde{y}(s), \quad \widetilde{Y}(s) = (s \operatorname{Id} - \widetilde{A}_1)^{-1} E_1 P_1^-(s) \widetilde{y}(s)$$

Terms that are functions \tilde{Y} and $\tilde{\alpha}(s, 1)$ can be (exponentially) compensated using stable filters and values of $\tilde{y}(s)$.

Design of the operators O_i

• Laplace transform of $\dot{\tilde{Y}}(t) = \tilde{A}_1 \tilde{Y}(t) + E_1 \tilde{\alpha}(t, 1)$:

$$(\operatorname{sld} - \widetilde{A}_1)\widetilde{Y}(s) = E_1\widetilde{lpha}(s,1)
ightarrow \left| \widetilde{y}(s) = C_{mes}(\operatorname{sld} - \widetilde{A}_1)^{-1}E_1\widetilde{lpha}(s,1) \right|$$

where \tilde{A}_1 is Hurwitz (Assumption 4) and $C_{mes}(sId - \tilde{A}_1)^{-1}E_1$ has no zeros in the RHP (Assumption 2)

• $P_1(s) = C_{mes}(sld - \tilde{A}_1)^{-1}E_1$ has a stable left-inverse (Assumption 4):

$$\tilde{\alpha}(s,1) = P_1^-(s)\tilde{y}(s), \quad \tilde{Y}(s) = (s\mathrm{Id} - \tilde{A}_1)^{-1}E_1P_1^-(s)\tilde{y}(s)$$

Terms that are functions \tilde{Y} and $\tilde{\alpha}(s, 1)$ can be (exponentially) compensated using stable filters and values of $\tilde{y}(s)$.

• We have $\dot{\tilde{\xi}}(t) = \tilde{A}_0 \tilde{\xi}(t) + G_3 \tilde{\alpha}(t,1) + G_4 \tilde{Y}(t) + O_0(\tilde{y})$

 $O_0(\tilde{y}(s)) = -(G_3P_1^{-}(s) + G_4(sld - \tilde{A}_1)^{-1}E_1P_1^{-}(s))\tilde{y}(s) \Rightarrow (sld - \tilde{A}_0)\tilde{\xi}(s) = 0$

Exponential convergence of $\tilde{\boldsymbol{\xi}}$ to 0.

 $\alpha(s,1) = P_1^-(s)\tilde{Y}(s), \quad \tilde{y}(s) = (s\mathsf{Id} - \tilde{A}_1)^{-1}E_1P_1^-(s)\tilde{y}(s)$

• We have $\tilde{\alpha}_t(t,x) + \Lambda^+ \tilde{\alpha}_x(t,x) = G_1(x)\tilde{\alpha}(t,1) + O_{\alpha}(x,\tilde{y})$. Thus

$$\mathcal{O}_{\alpha}(x,\tilde{y}) = -G_{1}(x)P_{1}^{-}(s)\tilde{y}(s) \Rightarrow \tilde{\alpha}_{t}(t,x) + \Lambda^{+}\tilde{\alpha}_{x}(t,x) = 0 \Rightarrow \left| \begin{array}{c} \tilde{\alpha}_{i}(t,x) = \tilde{\alpha}_{i}(t-\frac{x}{\lambda_{i}},0) \\ \tilde{\alpha}_{i}(t,x) = \tilde{\alpha}_{i}($$
$\alpha(s,1) = P_1^-(s)\tilde{Y}(s), \quad \tilde{y}(s) = (s \operatorname{Id} - \tilde{A}_1)^{-1} E_1 P_1^-(s)\tilde{y}(s)$

• We have $\tilde{\alpha}_t(t,x) + \Lambda^+ \tilde{\alpha}_x(t,x) = G_1(x)\tilde{\alpha}(t,1) + O_{\alpha}(x,\tilde{y})$. Thus

$$\mathcal{O}_{\alpha}(x,\tilde{y}) = -G_1(x)\mathcal{P}_1^{-}(s)\tilde{y}(s) \Rightarrow \tilde{\alpha}_t(t,x) + \Lambda^+ \tilde{\alpha}_x(t,x) = 0 \Rightarrow \left| \begin{array}{c} \tilde{\alpha}_i(t,x) = \tilde{\alpha}_i(t-\frac{x}{\lambda_i},0) \\ \end{array} \right|.$$

• We have $\tilde{\beta}_t(t,x) - \Lambda^- \tilde{\beta}_x(t,x) = G_2(x)\tilde{\alpha}(t,1) + O_{\beta}(x,\tilde{y})$. Thus

$$\mathcal{O}_{\beta}(x,\tilde{y}) = -G_{2}(x)P_{1}^{-}(s)\tilde{y}(s) \Rightarrow \tilde{\beta}_{t}(t,x) - \Lambda^{-}\tilde{\beta}_{x}(t,x) = 0$$
$$\Rightarrow \boxed{\beta_{j}(t,x) = \sum_{k=1}^{n} R_{jk}\tilde{\alpha}_{k}(t - \frac{1-x}{\mu_{j}}, 1)}.$$

• The function $\tilde{\alpha}(t,0)$ verifies

$$\begin{split} \tilde{\alpha}_{i}(s,0) &= ((Q\gamma_{\beta}(0) - \gamma_{\alpha}(0))\tilde{Y})_{i} + (O_{1}(\tilde{y}))_{i} + \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{ik}R_{k\ell} e^{-\frac{s}{\mu_{k}} - \frac{s}{\lambda_{\ell}}} \tilde{\alpha}_{\ell}(s,0) \\ &+ \int_{0}^{1} \sum_{k=1}^{m} \sum_{\ell=1}^{n} F_{ik}^{\beta}(v)R_{k\ell} e^{-\frac{s(1-v)}{\mu_{k}}} \tilde{\alpha}_{\ell}(s,1) dv \\ &+ \int_{0}^{1} \sum_{j=1}^{i} F_{ij}^{\alpha}(v) \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{jk}R_{k\ell} e^{-\frac{sv}{\lambda_{j}}} e^{-\frac{s}{\mu_{k}}} \tilde{\alpha}_{\ell}(s,1) dv, \end{split}$$

since F^{α} is strictly lower-triangular.

• The function $\tilde{\alpha}(t,0)$ verifies

$$\begin{split} \tilde{\alpha}_{i}(s,0) &= ((Q\gamma_{\beta}(0) - \gamma_{\alpha}(0))\tilde{Y})_{i} + (O_{1}(\tilde{y}))_{i} + \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{ik}R_{k\ell}e^{-\frac{s}{\mu_{k}} - \frac{s}{\lambda_{\ell}}} \tilde{\alpha}_{\ell}(s,0) \\ &+ \int_{0}^{1} \sum_{k=1}^{m} \sum_{\ell=1}^{n} F_{ik}^{\beta}(v)R_{k\ell}e^{-\frac{s(1-v)}{\mu_{k}}} \tilde{\alpha}_{\ell}(s,1)dv \\ &+ \int_{0}^{1} \sum_{j=1}^{i} F_{ij}^{\alpha}(v) \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{jk}R_{k\ell}e^{-\frac{sv}{\lambda_{j}}} e^{-\frac{s}{\mu_{k}}} \tilde{\alpha}_{\ell}(s,1)dv, \end{split}$$

since F^{α} is strictly lower-triangular.

• Possible to recursively define $O_1(\tilde{y})$ such that

$$\tilde{\alpha}_{i}(t,0) = \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{ik} R_{k\ell} \tilde{\alpha}_{\ell} (t - \frac{1}{\mu_{k}} - \frac{1}{\lambda_{\ell}}, 0)$$

• The function $\tilde{\alpha}(t,0)$ verifies

$$\begin{split} \tilde{\alpha}_{i}(s,0) &= ((Q\gamma_{\beta}(0) - \gamma_{\alpha}(0))\tilde{Y})_{i} + (O_{1}(\tilde{y}))_{i} + \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{ik}R_{k\ell}e^{-\frac{s}{\mu_{k}} - \frac{s}{\lambda_{\ell}}} \tilde{\alpha}_{\ell}(s,0) \\ &+ \int_{0}^{1} \sum_{k=1}^{m} \sum_{\ell=1}^{n} F_{ik}^{\beta}(v)R_{k\ell}e^{-\frac{s(1-v)}{\mu_{k}}} \tilde{\alpha}_{\ell}(s,1)dv \\ &+ \int_{0}^{1} \sum_{j=1}^{i} F_{ij}^{\alpha}(v) \sum_{k=1}^{m} \sum_{\ell=1}^{n} Q_{jk}R_{k\ell}e^{-\frac{sv}{\lambda_{j}}} e^{-\frac{s}{\mu_{k}}} \tilde{\alpha}_{\ell}(s,1)dv, \end{split}$$

since F^{α} is strictly lower-triangular.

• Possible to recursively define $O_1(\tilde{y})$ such that

$$\tilde{\alpha}_i(t,0) = \sum_{k=1}^m \sum_{\ell=1}^n Q_{ik} R_{k\ell} \tilde{\alpha}_\ell (t - \frac{1}{\mu_k} - \frac{1}{\lambda_\ell}, 0)$$

Exponential stabilization of α̃(t,0) (and consequently of α̃(t,1)) due to Assumption 3.

Convergence of the observer

- The states $\tilde{\alpha}(t, 1)$ and $\tilde{\xi}$ exponentially converge to zero.
- We have *Y*(t) = *A*₁*Y*(t) + *E*₁*α*(t,1) with *A*₁ Hurwitz. Thus the state *Y* exponentially converges to zero.
- Stabilization of the error system.

Convergence of the observer

With the proposed operators \mathcal{O}_0 , \mathcal{O}_α , \mathcal{O}_β , \mathcal{O}_1 , the observer state $(\hat{X}, \hat{u}, \hat{v}, \hat{Y}) = \mathcal{T}(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y})$ exponentially converges to (X, u, v, Y), \mathcal{T} being the inverse backstepping transformation.

Convergence of the observer

- The states $\tilde{\alpha}(t, 1)$ and $\tilde{\xi}$ exponentially converge to zero.
- We have *Y*(t) = *A*₁*Y*(t) + *E*₁*α*(t,1) with *A*₁ Hurwitz. Thus the state *Y* exponentially converges to zero.
- Stabilization of the error system.

Convergence of the observer

With the proposed operators \mathcal{O}_0 , \mathcal{O}_α , \mathcal{O}_β , \mathcal{O}_1 , the observer state $(\hat{X}, \hat{u}, \hat{v}, \hat{Y}) = \mathcal{T}(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y})$ exponentially converges to (X, u, v, Y), \mathcal{T} being the inverse backstepping transformation.

 Possible to low-pass filter the measured output signal to use strictly proper observer operators

Convergence of the observer

- The states $\tilde{\alpha}(t, 1)$ and $\tilde{\xi}$ exponentially converge to zero.
- We have *Y*(t) = *A*₁ *Y*(t) + E₁ *α*(t, 1) with *A*₁ Hurwitz. Thus the state *Y* exponentially converges to zero.
- Stabilization of the error system.

Convergence of the observer

With the proposed operators \mathcal{O}_0 , \mathcal{O}_α , \mathcal{O}_β , \mathcal{O}_1 , the observer state $(\hat{X}, \hat{u}, \hat{v}, \hat{Y}) = \mathcal{T}(\hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{Y})$ exponentially converges to (X, u, v, Y), \mathcal{T} being the inverse backstepping transformation.

- Possible to low-pass filter the measured output signal to use strictly proper observer operators
- The proposed observer could be combined with the previous state-feedback laws to obtain a strictly proper output-feedback controller.

Parameters:

 $\lambda = 2, \mu = 0.7, \sigma^{+-} = 1, \sigma^{-+} = 0.5, \rho = 0.5, q = 1.2.$ ODE dynamics in dimension n = 4, m = 3, c = 2

We want to reject a sinusoidal disturbance

Figure: Evolution of the distal ODE state $Y_1(t)$ (blue) in the presence of a disturbance Y_{dist}

Figure: Evolution of the control inputs $U_1(t)$ (blue) and $U_2(t)$ (red)

Simulation results

Figure: Evolution of the PDE state v(t,x)

Figure: Evolution of the norm of the error state

• Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking

- Backstepping transformation to simplify the structure of the system
- Frequency analysis to design the control law
- Filtering techniques to guarantee robustness

• Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking

- Backstepping transformation to simplify the structure of the system
- Frequency analysis to design the control law
- Filtering techniques to guarantee robustness

• Luenberger-like observer for the ODE-PDE-ODE system

- Backstepping transformation and frequency analysis approach for the error system.
- Output-feedback control law.
- Computational effort?

• Strictly proper dynamic state-feedback controller for dist. rejection and trajectory tracking

- Backstepping transformation to simplify the structure of the system
- Frequency analysis to design the control law
- Filtering techniques to guarantee robustness

• Luenberger-like observer for the ODE-PDE-ODE system

- Backstepping transformation and frequency analysis approach for the error system.
- Output-feedback control law.
- Computational effort?

• Perspectives?

- Model reduction?
- Leverage the different assumptions?
- Structure of the interconnection?

References

Aamo, O. M. (2012).

Disturbance rejection in 2 x 2 linear hyperbolic systems. *IEEE transactions on automatic control*, 58(5):1095–1106.

Auriol, J., Bribiesca-Argomedo, F., and Di Meglio, F. (2019).

Delay robust state feedback stabilization of an underactuated network of two interconnected PDE systems.

In American and Control Conference.

Bekiaris-Liberis, N. and Krstic, M. (2013).

Nonlinear control under nonconstant delays.

SIAM.

Bou Saba, D., Bribiesca-Argomedo, F., Di Loreto, M., and Eberard, D. (2017).

Backstepping stabilization of 2×2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics.

In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 2498–2503. IEEE.

Bou Saba, D., Bribiesca-Argomedo, F., Di Loreto, M., and Eberard, D. (2019).

Strictly proper control design for the stabilization of 2×2 linear hyperbolic ODE-PDE-ODE systems.

In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 4996–5001. IEEE.

Bresch-Pietri, D. (2012).

Commande robuste de systèmes à retard variable: Contributions théoriques et applications